DOI QR코드

DOI QR Code

Effect of antibiotic resistant factors in effluent of wastewater treatment plant on stream

하수처리장 방류수에 존재하는 항생제 내성인자가 하천에 미치는 영향

  • Jang, Yejin (Division of Biotechnology and Advanced Institute of Environmental and Bioscience, Chonbuk National University) ;
  • Yoo, Yong-Jae (Division of Biotechnology and Advanced Institute of Environmental and Bioscience, Chonbuk National University) ;
  • Sul, Woo Jun (Department of Systems Biotechnology, Chung Ang University) ;
  • Cha, Chang-Jun (Department of Systems Biotechnology, Chung Ang University) ;
  • Rhee, Ok-Jae (DK EcoV Environmental Microbiology Lab.) ;
  • Chae, Jong-Chan (Division of Biotechnology and Advanced Institute of Environmental and Bioscience, Chonbuk National University)
  • 장예진 (전북대학교 생명공학부 및 환경생명신기술연구소) ;
  • 유용재 (전북대학교 생명공학부 및 환경생명신기술연구소) ;
  • 설우준 (중앙대학교 시스템생명과학과) ;
  • 차창준 (중앙대학교 시스템생명과학과) ;
  • 이옥재 (DK EcoV 환경미생물연구소) ;
  • 채종찬 (전북대학교 생명공학부 및 환경생명신기술연구소)
  • Received : 2017.10.19
  • Accepted : 2017.10.20
  • Published : 2017.12.31

Abstract

The antibiotic resistant genes (ARG) and mobile genetic elements (MGE) were investigated with the effluent of waste-water treatment plant (WWTP), and river waters of upstream and downstream in order to elucidate the effect of effluent on antibiotic resistance in a natural river. Total numbers of 134~183 of ARG and MGE were detected and the abundance of ARG and MGE was 0.063~0.422 copies per one of 16S rRNA gene in three water samples. Effluent sample contained the highest amount of the total number and abundance of ARG and MGE whereas total viable cells were observed in the lowest amount among the three samples. This indicated that the genes were originated from cells died during the wastewater treatment process. In addition, the co-relationship of abundance between ARG and MGE suggested that acquired resistance was a prevalent mechanism among the antibiotic-resistant bacteria existing in WWTP.

하수처리장 방류수와 하천 중의 항생제 내성인자 분포에 대한 상관성을 분석하기 위해 방류수와 상류 하천수, 하류 하천수를 대상으로 항생제 내성유전자와 전파 관련 유전자를 조사하였다. 3개 지점에서 134~183개의 항생제 내성유전자(ARG) 및 전파 관련 유전자(MGE)가 검출되었으며, 1개의 16S rRNA 유전자에 대한 ARG 및 MGE 유전자의 상대적인 총 합이 0.063~0.422 copy로 분석되었다. ARG와 MGE의 수와 존재량은 방류수에서 가장 높게 검출된 반면, 총 세균 수는 가장 적게 검출됨으로서 하수처리 과정에서 사멸된 세균에 포함된 유전자들이 검출된 것으로 판단된다. 또한 MGE의 존재량 양상이 ARG의 존재량과 상관관계를 보임으로서 항생제 내성균들의 내성기작이 자연내성보다는 획득내성일 가능성을 제시하였다.

Keywords

References

  1. Chen, B., Yang, Y., Liang, X., Yu, K., Zhang, T., and Li, X. 2013. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments. Environ. Sci. Technol. 47, 12753-12760. https://doi.org/10.1021/es403818e
  2. de Castro, A.P., Fernandes, G.R., and Franco, O.L. 2014. Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes. Front. Microbiol. 5, 489.
  3. Forsberg, K.J., Reyes, A., Wang, B., Selleck, E.M., Sommer, M.O., and Dantas, G. 2012. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107-1111. https://doi.org/10.1126/science.1220761
  4. Ikehata, K., Naghashkar, N.J., and El-Din, M.G. 2006, Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci. Eng. 28, 353-414. https://doi.org/10.1080/01919510600985937
  5. Knapp, C.W., Dolfing, J., Ehlert, P.A., and Graham, D.W. 2010. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44, 580-587. https://doi.org/10.1021/es901221x
  6. Looft, T., Johnson, T.A., Allen, H.K., Bayles, D.O., Alt, D.P., Stedtfeld, R.D., Sul, W.J., Stedtfeld, T.M., Chai, B., Cole, J.R., et al. 2012. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA 109, 1691-1696.
  7. Ohlsen, K., Ternes, T., Werner, G., Wallner, U., Loffler, D., Ziebuhr, W., Witte, W., and Hacker, J. 2003. Impact of antibiotics on conjugational resistance gene transfer in Staphylococcus aureus in sewage. Environ. Microbiol. 5, 711-716. https://doi.org/10.1046/j.1462-2920.2003.00459.x
  8. Reinthaler, F.F., Posch, J., Feierl, G., Wust, G., Haas, D., Ruckenbauer, G., Mascher, F., and Marth, E. 2003. Antibiotic resistance of E. coli in sewage and sludge. Water Res. 37, 1685-1690. https://doi.org/10.1016/S0043-1354(02)00569-9
  9. Schmieder, R. and Edwards, R. 2012. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol. 7, 73-89. https://doi.org/10.2217/fmb.11.135
  10. Su, H.C., Pan, C.G., Ying, G.G., Zhao, J.L., Zhou, L.J., Liu, Y.S., Tao, R., Zhang, R.Q., and He, L.Y. 2014. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale. Sci. Total Environ. 490, 708-714. https://doi.org/10.1016/j.scitotenv.2014.05.060
  11. Zhu, Y.G., Johnson, T.A., Su, J.Q., Qiao, M., Guo, G.X., Stedtfeld, R.D., Hashsham, S.A., and Tiedje, J.M. 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 110, 3435-3440.