DOI QR코드

DOI QR Code

Complete genome sequence of Chryseobacterium sp. T16E-39, a plant growth-promoting and biocontrol bacterium, isolated from tomato (Solanum lycopersicum L.) root

토마토 뿌리에서 분리한 식물생육촉진과 생물방제 세균 Chryseobacterium sp. T16E-39 균주의 유전체 서열

  • Lee, Shin Ae (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Sang Yoon (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sang, Mee Kyung (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Song, Jaekyeong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Weon, Hang-Yeon (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • 이신애 (국립농업과학원 농업미생물과) ;
  • 김상윤 (국립농업과학원 농업미생물과) ;
  • 상미경 (국립농업과학원 농업미생물과) ;
  • 송재경 (국립농업과학원 농업미생물과) ;
  • 원항연 (국립농업과학원 농업미생물과)
  • Received : 2017.10.16
  • Accepted : 2017.12.04
  • Published : 2017.12.31

Abstract

Chryseobacterium sp. strain T16E-39, isolated from roots of a tomato plant, promotes plant growth and suppresses phytophthora blight and bacterial wilt diseases. The complete genome of strain T16E-39 consists of a circular chromosome with 4,872,888 base pairs with a G + C content of 35.22%. The genome includes 4,289 coding sequences, 15 rRNAs, and 71 tRNAs. We detected genes involved in phosphate solubilization, phytohormone regulation, antioxidant activity, chitin degradation, and the type IX secretion system (T9SS) that may be related to growth promotion and disease suppression in plants.

토마토 뿌리에서 분리한 Chryseobacterium sp. T16E-39 균주는 식물생육촉진과 역병, 시들음병에 대한 억제효과가 있었다. 이 균주의 유전체 염기서열은 4,873,888 염기쌍이었으며 G + C 함량은 35.22%이었다. 이 유전체는 4,289개 단백질 유전자, 15개 rRNA 유전자, 71개 tRNA 유전자를 포함하였다. T16E-39 균주의 유전체에서 인산가용화, 식물호르몬 조절, 항산화 활성, 키틴 분해, 제9형 분비시스템에 관여하는 유전자를 확인하였으며, 이들 유전자는 식물의 생육을 촉진하고 병발생을 억제하는 기작과 관련되어 있을 것으로 판단된다.

Keywords

References

  1. Abby, S.S., Cury, J., Guglielmini, J., Neron, B., Touchon, M., and Rocha, E.P. 2016. Identification of protein secretion systems in bacterial genomes. Sci. Rep. 6, 23080. https://doi.org/10.1038/srep23080
  2. Angiuoli, S.V., Gussman, A., Klimke, W., Cochrane, G., Field, D., Garrity, G., Kodira, C.D., Kyrpides, N., Madupu, R., Markowitz, V., et al. 2008. Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. OMICS 12, 137-141. https://doi.org/10.1089/omi.2008.0017
  3. Aziz, R.K., Bartels, D., Best, A.A., De Jongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., et al. 2008. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9, 75. https://doi.org/10.1186/1471-2164-9-75
  4. Dardanelli, M.S., Manyani, H., Gonzalez-Barroso, S., Rodriguez-Carvajal, M.A., Gil-Serrano, A.M., Espuny, M.R., Lopez-Baena, F.J., Bellogin, R.A., Megias, M., and Ollero, F.J. 2009. Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328, 483-493.
  5. Gross, F., Durner, J., and Gaupels, F. 2013. Nitric oxide, antioxidants and prooxidants in plant defence responses. Front. Plant Sci. 4, 419.
  6. Kolton, M., Frenkel, O., Elad, Y., and Cytryn, E. 2014. Potential role of flavobacterial gliding-motility and type IX secretion system complex in root colonization and plant defense. Mol. Plant Microbe Interact. 27, 1005-1013. https://doi.org/10.1094/MPMI-03-14-0067-R
  7. Kook, M., Son, H.M., Ngo, H.T., and Yi, T.H. 2014. Chryseobacterium camelliae sp. nov., isolated from green tea. Int. J. Syst. Evol. Microbiol. 64, 851-857. https://doi.org/10.1099/ijs.0.057398-0
  8. Sang, M.K., Chun, S.C., and Kim, K.D. 2008. Biological control of phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol. Control 46, 424-433. https://doi.org/10.1016/j.biocontrol.2008.03.017
  9. Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., and Gobi, T.A. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2, 587. https://doi.org/10.1186/2193-1801-2-587
  10. Spaepen, S. and Vanderleyden, J. 2011. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 3, a001438.
  11. Vandamme, P., Bernardet, J.F., Segers, P., Kersters, K., and Holmes, B. 1994. New perspectives in the classification of the Flavobacteria: Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int. J. Syst. Bacteriol. 44, 827-831. https://doi.org/10.1099/00207713-44-4-827
  12. Zhang, Z., Yuen, G.Y., Sarath, G., and Penheiter, A.R. 2001. Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathology 91, 204-211. https://doi.org/10.1094/PHYTO.2001.91.2.204

Cited by

  1. Phylogenetic insights into the diversity of Chryseobacterium species vol.1, pp.3, 2017, https://doi.org/10.1099/acmi.0.000019