DOI QR코드

DOI QR Code

Thermoelectric Seebeck and Peltier effects of single walled carbon nanotube quantum dot nanodevice

  • El-Demsisy, H.A. (Faculty of Engineering, Benha University) ;
  • Asham, M.D. (Faculty of Engineering, Benha University) ;
  • Louis, D.S. (Faculty of Engineering, Ain-Shams University) ;
  • Phillips, A.H. (Faculty of Engineering, Ain-Shams University)
  • Received : 2016.05.26
  • Accepted : 2016.10.06
  • Published : 2017.01.31

Abstract

The thermoelectric Seebeck and Peltier effects of a single walled carbon nanotube (SWCNT) quantum dot nanodevice are investigated, taking into consideration a certain value of applied tensile strain and induced ac-field with frequency in the terahertz (THz) range. This device is modeled as a SWCNT quantum dot connected to metallic leads. These two metallic leads operate as a source and a drain. In this three-terminal device, the conducting substance is the gate electrode. Another metallic gate is used to govern the electrostatics and the switching of the carbon nanotube channel. The substances at the carbon nanotube quantum dot/metal contact are controlled by the back gate. Results show that both the Seebeck and Peltier coefficients have random oscillation as a function of gate voltage in the Coulomb blockade regime for all types of SWCNT quantum dots. Also, the values of both the Seebeck and Peltier coefficients are enhanced, mainly due to the induced tensile strain. Results show that the three types of SWCNT quantum dot are good thermoelectric nanodevices for energy harvesting (Seebeck effect) and good coolers for nanoelectronic devices (Peltier effect).

Keywords

References

  1. Goldsmid HJ. Introduction to Thermoelectricity, Springer-Verlag Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-00716-3.
  2. Wang JS, Wang J, Lu JT. Quantum thermal transport in nanostructures. Eur Phys J B, 62, 381 (2008). https://doi.org/10.1140/epjb/e2008-00195-8.
  3. Dubi Y, Di Ventra M. Colloquium: heat flow and thermoelectricity in atomic and molecular junctions. Rev Mod Phys, 83, 131 (2011). https://doi.org/10.1103/revmodphys.83.131.
  4. Minnich AJ, Dresselhaus MS, Ren ZF, Chen G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci, 2, 466 (2009). https://doi.org/10.1039/B822664B.
  5. Jiang JW, Wang JS, Li B. A nonequilibrium Green's function study of thermoelectric properties in single-walled carbon nanotubes. J Appl Phys, 109, 014326 (2011). https://doi.org/10.1063/1.3531573.
  6. Hone J, Ellwood I, Muno M, Mizel A, Cohen ML, Zettl A, Rinzler AG, Smalley RE. Thermoelectric power of single-walled carbon nanotubes. Phys Rev Lett, 80, 1042 (1998). https://doi.org/10.1103/PhysRevLett.80.1042.
  7. Kong WJ, Lu L, Zhu HW, Wei BQ, Wu DH. Thermoelectric power of single-walled carbon nanotubes strand. J Phys Condens Matter, 17, 1923 (2005). https://doi.org/10.1088/0953-8984/17/12/015.
  8. Small JP, Perez KM, Kim P. Modulation of thermoelectric power of individual carbon nanotubes. Phys Rev Lett, 91, 256801 (2003). https://doi.org/10.1103/PhysRevLett.91.256801.
  9. Romero HE, Sumanasekera GU, Mahan GD, Eklund PC. Thermoelectric power of single-walled carbon nanotube films. Phys Rev B, 65, 205410 (2002). https://doi.org/10.1103/PhysRevB.65.205410.
  10. Yao Q, Chen L, Zhang W, Liufu S, Chen X. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano, 4, 2445 (2010). https://doi.org/10.1021/nn1002562.
  11. El-Demsisy HA, Asham MD, Louis DS, Phillips AH. Coherent photo-electrical current manipulation of carbon nanotube field effect transistor induced by strain. Open Sci J Mod Phys, 2, 27 (2015).
  12. El-Demsisy HA, Asham MD, Louis DS, Phillips AH. Strain effect on transport properties of chiral carbon nanotube nanodevice. Int J Nanosci Nanoeng, 2, 6 (2015).
  13. Esfarjani K, Zebarjadi M, Kawazoe Y. Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation. Phys Rev B, 73, 085406 (2006). https://doi.org/10.1103/physrevb.73.085406.
  14. Bosnick K, Gabor N, McEuen P. Transport in carbon nanotube p-i-n diodes. Appl Phys Lett, 89, 163121 (2006). https://doi.org/10.1063/1.2360895.
  15. Mina AN, Awadallah AA, Phillips AH, Ahmed RR. Microwave spectroscopy of carbon nanotube field effect transistor. Prog Phys, 4, 61 (2010).
  16. Awadallah AA, Phillips AH, Mina AN, Ahmed RR. Photon-assisted transport in carbon nanotube mesoscopic device. Int J Nanosci, 10, 419 (2011). https://doi.org/10.1142/S0219581X11008162.
  17. Platero G, Aguado R. Photon assisted transport in semiconductor nanostructures. Phys Rep, 395, 1 (2004). https://doi.org/10.1016/j.physrep.2004.01.004.
  18. Nakanishi T, Bachtold A, Dekker C. Transport through the interface between a semiconducting carbon nanotube and a metal electrode. Phys Rev B, 66, 073307 (2002). https://doi.org/10.1103/PhysRevB.66.073307.
  19. Heinze S, Radosavljević M, Tersoff J, Avouris P. Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors. Phys Rev B, 68, 235418 (2003). https://doi.org/10.1103/PhysRevB.68.235418.
  20. Kleiner A, Eggert S. Band gaps of primary metallic carbon nanotubes. Phys Rev B, 63, 073408 (2001). https://doi.org/10.1103/PhysRevB.63.073408.
  21. Satio R, Dresselhaus G, Dresselhaus MS. Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998).
  22. Minot ED, Yaish Y, Sazonova V, Park JY, Brink M, Paul L, McEuen PL. Tuning carbon nanotube band gaps with strain. Phys Rev Lett, 90, 156401 (2003). https://doi.org/10.1103/PhysRev-Lett.90.156401.
  23. Bhattacharya S, De D, Ghosh S, Ghatak KP. Fowler-Nordheim field emission from carbon nanotubes inder intense electric field. J Comput Theor Nanosci, 10, 664 (2013). https://doi.org/10.1166/jctn.2013.2752.
  24. Mina AN, Awadallah AA, Phillips AH, Ahmed RR. Simulation of the band structure of graphene and carbon nanotube. J Phys Conf Ser, 343, 012076 (2012). https://doi.org/10.1088/1742-6596/343/1/012076.
  25. Wong HSP, Akinwande D. Carbon Nanotube and Graphene Device Physics, Cambridge University Press, Cambridge (2011). https://doi.org/10.1017/CBO9780511778124.
  26. Zhao LN, Zhao HK. Coherent mesoscopic transport through a quantum dot-carbon nanotube system under two-photon irradiation. Eur Phys J B Condensed Matter Complex Syst, 42, 285 (2004). https://doi.org/10.1140/epjb/e2004-00381-8.
  27. Pourfath M, Kosina H. Computational study of carbon-based electronics. J Comput Electron, 8, 427, (2009). https://doi.org/10.1007/s10825-009-0285-z.
  28. Pimparkar N, Cao Q, Rogers JA, Alam MA. Theory and practice of "striping" for Improved ON/OFF ratio in carbon nanonet thin film transistors. Nano Res, 2, 167 (2009). https://doi.org/10.1007/s12274-009-9013-z.
  29. Tan X, Liu H, Wen Y, Lv H, Pan L, Shi J, Tang X. Optimizing the thermoelectric performance of zigzag and chiral carbon nanotubes. Nanoscale Res Lett, 7, 116 (2012). https://doi.org/10.1186/1556-276X-7-116.
  30. Guo J, Datta S, Lundstrom M. A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors. IEEE Trans Electron Devices, 51, 172 (2004). https://doi.org/10.1109/TED.2003.821883.
  31. Chen Z, Appenzeller J, Knoch J, Lin YM, Avouris P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett, 5, 1497 (2005). https://doi.org/10.1021/nl0508624.
  32. Mina AN, Zaki GH, Phillips AH. Coherent transport of carbon nanotube field effect transistor driven by AC-signal. Egypt J Phys, 42, 21 (2011).
  33. Meyer C, Elzerman JM, Kouwenhoven LP. Photon-assisted tunneling in a carbon nanotube quantum dot. Nano Lett, 7, 295 (2007). https://doi.org/10.1021/nl062273j.
  34. Awadalla AA, Phillips AH. Thermal shot noise through boundary roughness of carbon nanotube quantum dots. Chin Phys Lett, 28, 017304 (2011). https://doi.org/10.1088/0256-307x/28/1/017304.
  35. Elseddawy AM, Zein WA, Phillips AH. Carbon nanotube-based nanoelectromechanical resonator as strain sensor. J Comput Theor Nanosci, 11, 1174 (2014). https://doi.org/10.1166/jctn.2014.3478.
  36. Kanatzidis MG. Nanostructured thermoelectrics: the new paradigm? Chem Mater, 22, 648 (2010). https://doi.org/10.1021/cm902195j.
  37. Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX. Uniaxial strain on graphene: Raman spectroscopy study and band gap opening. ACS Nano, 2, 2301 (2008). https://doi.org/10.1021/nn800459e.
  38. Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett, 84, 5552 (2000). https://doi.org/10.1103/PhysRev-Lett.84.5552.
  39. Tserpes KI, Papanikos P. The effect of Stone-Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes. Compos Struct, 79, 581 (2007). https://doi.org/10.1016/j.compstruct.2006.02.020.
  40. Zidour M, Hadji L, Bouazza M, Tounsi A, Bedia ElA. The mechanical properties of zigzag carbon nanotube using the energyyequivalent model. J Chem Mater Res, 3, 9 (2015).