DOI QR코드

DOI QR Code

Hot carrier induced device degradation in amorphous InGaZnO thin film transistors with source and drain electrode materials

소스 및 드레인 전극 재료에 따른 비정질 InGaZnO 박막 트랜지스터의 소자 열화

  • Lee, Ki Hoon (Department of Electronic Engineering, Incheon National University) ;
  • Kang, Tae Gon (Department of Electronic Engineering, Incheon National University) ;
  • Lee, Kyu Yeon (Department of Electronic Engineering, Incheon National University) ;
  • Park, Jong Tae (Department of Electronic Engineering, Incheon National University)
  • Received : 2016.08.04
  • Accepted : 2016.08.19
  • Published : 2017.01.31

Abstract

In this work, InGaZnO thin film transistors with Ni, Al and ITO source and drain electrode materials were fabricated to analyze a hot carrier induced device degradation according to the electrode materials. From the electrical measurement results with electrode materials, Ni device shows the best electrical performances in terms of mobility, subthreshold swing, and $I_{ON}/I_{OFF}$. From the measurement results on the device degradation with source and drain electrode materials, Al device shows the worst device degradation. The threshold voltage shifts with different channel widths and stress drain voltages were measured to analyze a hot carrier induced device degradation mechanism. Hot carrier induced device degradation became more significant with increase of channel widths and stress drain voltages. From the results, we found that a hot carrier induced device degradation in InGaZnO thin film transistors was occurred with a combination of large channel electric field and Joule heating effects.

본 연구에서는 소스 및 드레인 전극 재료에 따른 소자 열화를 분석하기 위해 Ni, Al, 및 ITO를 소스 및 드레인 전극 재료로 사용하여 InGaZnO 박막 트랜지스터를 제작하였다. 전극 재료에 따른 소자의 전기적 특성을 분석한 결과 Ni 소자가 이동도, 문턱전압 이하 스윙, 구동전류 대 누설전류 비율이 가장 우수하였다. 소스 및 드레인 전극 재료에 따른 소자 열화 측정결과 Al 소자의 열화가 가장 심한 것을 알 수 있었다. InGaZnO 박막 트랜지스터의 소자 열화 메카니즘을 분석하기 위하여 채널 폭과 스트레스 드레인 전압을 다르게 하여 문턱전압 변화를 측정하였다. 그 결과 채널 폭이 넓을수록 또 스트레스 드레인 전압이 높을수록 소자 열화가 많이 되었다. 측정결과로부터 InGaZnO 박막 트랜지스터의 소자 열화는 큰 채널 전계와 주울 열의 결합 작용으로 발생함을 알 수 있었다.

Keywords

References

  1. P. Barquinha, A. M. Vila, G. Goncalves, L. Pereira, R. Martins, J. R. Morante, and E. Fortunato, "Gallium-Indium-Zinc-Oxide-Base Thin Film Transistors: Influence of the Source/Drain Material," IEEE Transaction. Electron Device, vol. 55, no. 4, pp. 954-960, Apr. 2006.
  2. J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee, and Y. C. Joo, "Effect of Metal Electrode on the Electrical Performance of Amorphous In-Ga-Zn-O Thin Film Transistor," Japanese Journal of Applied Physics, vol. 51, pp. 011401-1-5, Dec. 2011.
  3. Y. Ueoka, Y. Ishikawa, J. P. Bermundo, H. Yamazki, S. Urakawa, Y. Osada, M.. Horita, and Y. Uraoka, "Effect of contact material on amorphous InGaZnO thin-film transistor characteristics," Japanese Journal of Applied Physics, vol. 53, pp. 03CC04-1-5, Feb. 2014. https://doi.org/10.7567/JJAP.53.03CC04
  4. J. H. Na, M. Kitamura, and Y. Arakawa,"High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes," Applied physics Letters, vol. 93, pp. 063501-1-3, Aug. 2008. https://doi.org/10.1063/1.2969780
  5. J. Park, C. S. Kim, Y.S. Kim, Y. C. Park, H. J. Park, B. S. Bae, J. S. Park, and H. S. Kim, "The effect of ITO and Mo electrodes on the properties and stablity of In-Ga-Zn-O thin film transistors," Journal of Electronics, vol. 36, no. 1, pp. 129-134, Jun. 2016.
  6. H. J. Kim, H. N. Lee, J. C. Park, and W. C. Lee, "The mechanism of improvement of contact resistivity in TFT-LCDs between IZO layers and Al-based metal lines by diffusion of Mo atoms," Current Applied Physics, vol. 2, no.6, pp. 451-454, Dec. 2002. https://doi.org/10.1016/S1567-1739(02)00097-4
  7. W. S. Kim, Y. K. Moon, S. Lee, B. W. Kang, T. S. Kwon, K. T. Kim, and J. W. Park, "Copper source/drain electrode contact resistance effects in amorphous indium-galliun-zinc-oxide thin film transistors," Physics. Status Solidi : Rapid Rev Lett, vol. 3, no. 7-8, pp. 239-241, Oct. 2009. https://doi.org/10.1002/pssr.200903225
  8. K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, "Origins of threshold voltage shifts in room-temperature deposited and annealed a-In-Ga-Zn-O thin film transistors," Applied Physics Letters, vol.95, pp. 013502-1-3, Jul. 2009. https://doi.org/10.1063/1.3159831
  9. J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, "Biass-tress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors," Applied Physics Letters, vol. 93, no. 11, pp. 093504-1-3, Sep. 2008. https://doi.org/10.1063/1.2977865
  10. T. Y. Hsieh, T. C. Chang, T. C. Chen, and M. Y. Tsai, "Review of Present Reliability Challenges in Amorphous In-Ga-Zn-O Thin Film Transistors," ECS Journal of Solid State Science and Technology, vol. 3, no. 9, pp. Q3058-Q3070, Aug. 2014. https://doi.org/10.1149/2.013409jss
  11. C. H. Jo, S. W. Jun, W. J. Kim, I. S. Hur, H. Y. Bae, S. J. Choi, D. H. Kim, and D. M. Kim, "Characterization of density-of-states and parasitic resistance in a-InGaZnO thin-film transistors after negative bias stress," Applied Physics Letters, vol. 102, pp. 143502-1-5, Apr. 2013. https://doi.org/10.1063/1.4800172
  12. Y. M. Kim, K. S. Jeong, H. J. Yun, S. D. Yang, S. Y. Lee, H. D. Lee, and G. W. Lee, "Anomalous Stress-Induced Hump Effect in Amorphous Indium Gallim Zinc Oxide TFTs," Transactions on Electrical and Electronic Materials, vol. 13, no. 1, pp. 47-49, Feb. 2012. https://doi.org/10.4313/TEEM.2012.13.1.47
  13. B. K. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, "O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors," Applied Physics Letters, vol. 97, no. 7, pp. 022108-1-3, Jul. 2010. https://doi.org/10.1063/1.3464964
  14. Y. J. Chung, U. K. Kim, E. S. Hwang, and C. S. Hwang, "Indium tin oxide/InGaZnO bilayer stacks for enhanced mobility and optical stability in amorphous oxide thin film transistors," Applied Physics Letters, vol. 105, pp. 013508-1-5, Jul. 2014. https://doi.org/10.1063/1.4889856
  15. J. S. Park, T. S. Kim, K. S. Son, J. S. Jung, K. H. Lee, J. Y. Kwon, B. K. Koo, and S. Y. Lee, "Influence of Illumination on the Negative-Bias-Stability of Transparent Hafnium-Indium Zinc-Oxide Thin Film Transistors," IEEE Electron Device Letters, vol. 31, no. 5, pp. 440-442, May. 2010. https://doi.org/10.1109/LED.2010.2043050
  16. M. Furuta, J. Jiang, M. P. Hung, T. Toda, D. Wang, and G. Tatsuoka, "Suppression of Negative Gate Bias and Illumination Stress Degradation by Fluorine-Passivated InGaZnO Thin-Film Transistors," ECS Journal of Solid State Science and Technology, vol. 5, no. 3, pp. Q88-Q91, Jan. 2016. https://doi.org/10.1149/2.0131603jss
  17. S. H. Choi, and M. K. Han, "Effect of channel widths on negative shift of threshold voltage, including stress-induced hump phenomenon in InGaZnO thin-film transistors under high-gate and drain bias stress," Applied Physics Letters, vol. 100, no. 7, pp. 043503-1-3, Jan. 2012. https://doi.org/10.1063/1.3679109
  18. S. M. Lee, C. G. Yu, W. J. Cho, J. T. Park, "Hot carrier degradation of InGaZnO thin film transistors under light illumination at the elevated temperature," Solid-State Electronics, vol.72, no.6, pp. 88-92, Jun. 2012. https://doi.org/10.1016/j.sse.2012.02.010
  19. J. I. Kim, I. T. Cho, S. M. Joe, C. Y. Jeong, D. E. Lee, H. I. Kwon, S. H. Jin, and J. H. Lee,"Effect of Temperature and Electric Field on Degradation in Amorphous InGaZnO TFTs Under Positive Gate and Drain Bais Stress," IEEE Electron Device Letters, vol. 35, no. 4, pp. 458-460, Apr. 2014. https://doi.org/10.1109/LED.2014.2306818
  20. J. C. Park, C. J. Kim, S. I. Kim, I. H. Song, S. W. Kim, D. H. Kang, H. Lim, H. Yin, R. J. Jung, E. H. Lee, J. C. Lee, K. W. Kwon, and Y. S. Park, "Source/Drain Series-Resistance Effects in Amorphous Gallium-Indium-Zinc-Oxide thin-film Transistors," IEEE Electron Device Letters, vol. 29, no. 8, pp. 879-881, Aug. 2008. https://doi.org/10.1109/LED.2008.2000815
  21. S. Urakawa, S. Tomai, Y. Ueoka, H. Yamazaki, M. Kasami, K. Yano, D. Wang, M. Furuta, M. Horita, Y. Ishikawa, and Y. Uraoka, "Thermal analysis of amorphous oxide thin-film transistor degraded by combination of joule heating and hot carrier effect," Applied Physics Letters, vol. 102, pp. 053506-1-4, Feb. 2013. https://doi.org/10.1063/1.4790619

Cited by

  1. 박막의 두께가 비정질 InGaZnO 무접합 트랜지스터의 소자 불안정성에 미치는 영향 vol.21, pp.9, 2017, https://doi.org/10.6109/jkiice.2017.21.9.1627
  2. 산소공공을 이용한 V2O5 저항성 메모리의 전기적인 동작특성 해석 vol.21, pp.10, 2017, https://doi.org/10.6109/jkiice.2017.21.10.1827