DOI QR코드

DOI QR Code

Performance Analysis of the Active SAS Autofocus Processing for UUV Trajectory Disturbances Compensation

수중무인체 궤적교란 보상을 위한 능동 SAS 자동초점처리 성능 분석

  • Kim, Boo-il (Department of Interdisciplinary Program of Weapon Systems Engineering, Specialized Graduate School Science & Technology Convergence, Pukyong National University)
  • Received : 2016.10.12
  • Accepted : 2016.10.24
  • Published : 2017.01.31

Abstract

An active synthetic aperture sonar mounted on small UUV is generated various trajectory disturbances in the traveling path by the influence of external underwater environments. That is the phase mismatch occurs in the synthetic aperture processing of the signals reflected from seabed objects and fetches the detection performance decreases. In this paper, we compensated deteriorated images by the active SAS autofocus processing using DPC and analyzed the effects of detection performance when the periodic trajectory disturbances occur in the side direction at a constant velocity and straight movement of UUV. Through simulations, the deteriorated images according to the periodic disturbance magnitudes and period variations in the platform were compensated using difference phases processing of the overlapping displaced phase centers on the adjacent transmitted ping signals, and we conformed the improved performance characteristics of azimuth resolution and detection images at 3dB reference point.

소형 수중무인체에 탑재 운용되는 능동 합성개구면소나는 외부 수중환경의 영향으로 진행경로에 여러 가지 궤적 교란이 발생한다. 이는 해저 물체에서 반사된 신호의 합성 개구면처리에 있어서 위상 부정합이 발생되어 탐지성능의 저하를 가져 온다. 본 논문에서는 수중무인체가 정속도 직선기동시 현측방향으로 주기적 궤적교란이 발생될 때 DPC를 이용한 능동 SAS 자동초점처리로 훼손된 이미지를 보상하고 탐지성능에 미치는 영향을 비교 분석하였다. 시뮬레이션을 통해 플랫폼의 주기적 교란 크기 및 변동 주기에 의한 훼손된 이미지는 인접된 송신 핑신호의 겹쳐진 위상중심점 위상차 적용으로 궤적교란 보상처리가 가능하고 3dB 기준 방위해상도 및 탐지 이미지의 성능개선 특성을 확인하였다.

Keywords

References

  1. M. P. Hayes, "Synthetic aperture sonar: a review of current status," IEEE Journal of Oceanic Engineering, vol. 34, pp. 207-217, July 2009. https://doi.org/10.1109/JOE.2009.2020853
  2. T. O. Saebo, S. A. V. Synnes, and R. E. Hansen, "Wideband interferometry in synthetic aperture sonar," IEEE Transaction on Geoscience and Remote Sensing, vol. 51, no. 8, pp. 4450-4459, Aug. 2013. https://doi.org/10.1109/TGRS.2013.2244900
  3. R. E. Hansen, H. J. Callow, T. O. Saebo, and S. A. V. Synnes, "Challenges in seafloor imaging and mapping with synthetic aperture sonar," IEEE Transactions on geoscience and Remote Sensing, vol. 48, no. 10, pp. 3677-3687, Oct. 2011.
  4. J. E. Piper, R. Lim, E. I. Thorsos, and K. L. Williams, "Buried sphere detection using a synthetic aperture sonar," IEEE Journal of Oceanic Engineering, vol. 34, no. 4, pp. 485-494, Oct. 2009. https://doi.org/10.1109/JOE.2009.2030971
  5. D. A. Cook, J. T. Christoff, and J. E. Fernandez, "Motion compensation of AUV-based synthetic aperture sonar," Oceans 2003 Proceedings, San Diego, CA, pp. 2143-2148, Sept. 2003.
  6. H. J. Callow, M. P. Hayes, and P. T. Gough, "Motioncompensation improvement for widebeam, multiplereceiver SAS systems," IEEE Journal of Oceanic Engineering, vol. 34, no. 3, pp. 262-268, July 2009. https://doi.org/10.1109/JOE.2009.2014659
  7. T. J. Sutton, H. D. Griffiths, A. P. Helet. Y. Perrot, and S. A. Chapman, "Experimental validation of autofocus algorithms for high-resolution imaging of the seabed using synthetic aperture sonar," IEE Proceedings-Radar, Sonar and Navigation, vol. 150, no. 2, pp. 78-83, April 2003. https://doi.org/10.1049/ip-rsn:20030213
  8. J. Ren and R. G. Vaughan, "Model-based sonar motion compensation for bottom reverberation coherence," IEEE Journal of Oceanic Engineering, vol. 35, no. 4, pp. 887-894, Oct. 2010. https://doi.org/10.1109/JOE.2010.2079610
  9. X. Wang, X. Zhang, and S. Zhu, "Upsampling based back projection imaging algorithm for multi-receiver synthetic aperture sonar," International Industrial Informatics and Computer Engineering Conference, pp. 1610-1615, 2015.
  10. X. Jiang, C. Sun, and J. Feng, "A noval image reconstruction algorithm for synthetic apertrure sonar with single transmitter and multiple-receiver configuration," in Proceedings of the Oceans '04. MTTS/IEEE Techno, vol. 4, pp. 1940-1944, Nov. 2004.
  11. X. Zhang, J. Tang, and H. Zhong, "Multireceiver correction for the chirp scaling algorithm in synthetic apertrure sonar," IEEE Journal of Oceanic Engineering, vol. 39, no. 3, pp. 472-481, July 2014. https://doi.org/10.1109/JOE.2013.2251809
  12. S. Zhu, J. Yue, and W. Jiang, "SAS autofocus based on phase gradient autofocus," 2011 4th International Workshop on Chaos-Fractals Theories and Applications, pp. 298-301, Oct. 2011.
  13. H. Schmaljohann and J. Groen, "Motion estimation for synthetic aperture sonars," 2012 EUSAR 9th European Conference on Synthetic Aperture Radar, Germany, pp. 78-81, April 2012.
  14. J. Groen, "Adaptive motion estimation in sonar array processing," Ph. D. dissertation, TU Delft University of Technology, 2006.
  15. A. Bellettini and M. A. Pinto, "Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna," IEEE Journal of Oceanic Engineering, vol. 27, no. 4, pp. 780-789, Oct. 2002. https://doi.org/10.1109/JOE.2002.805096
  16. B. I. Kim, "Influences analysis of SAS azimuth resolution on the UUV trajectory disturbances," Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 1, pp. 222-229, Jan. 2016. https://doi.org/10.6109/jkiice.2016.20.1.222
  17. R. Heremans, M. Acheroy, and Y. Dupont, "Motion compensation on synthetic aperture sonar images," in Proceedings of SPIE 6365 on Image and Signal Processing for Remote Sensing XII, Stockholm, Sweden, pp. 236-245, 1992. September 2006.
  18. L. Yu, N. Neretti, and N. Intrator, "Robust motion estimation improves underwater sonar accuracy," in Proceedings of the 2005 IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety, Orlando, pp. 144-150, April 2005.