DOI QR코드

DOI QR Code

Optimized Design and Manufacture of Wideband Pulsed Gamma-ray Sensors

광대역 펄스감마선 탐지센서 최적화 설계 및 제작

  • Jeong, Sang-hun (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute) ;
  • Lee, Nam-ho (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute)
  • Received : 2016.08.12
  • Accepted : 2016.08.29
  • Published : 2017.01.31

Abstract

In this paper, we are proposing an optimal design of wideband pulsed type gamma-ray sensors. These sensors were manufactured based on the design results and after word electrical properties were analyzed. The sensor input parameters were derived on the basis of pulsed gamma-ray spectrum and time-dependent energy rate, and the output current which were derived on the basis of the sensor sensitivity control circuit. Pulsed gamma-ray sensors were designed using the TCAD simulators. The design results show that the optimal Epi layer thickness is 45um with the applied voltage 3.3V and the diameter is 2.0mm. The doping concentrations are as follows : N-type is an Arsenic as $1{\times}10^{19}/cm^3$, P-type is a Boron as $1{\times}10^{19}/cm^3$ and Epi layer is Phosphorus as $3.4{\times}10^{12}/cm^3$. The fabricated sensor was a leakage current, 12pA at voltage -3.3V and fully depleted mode at voltage -5V. A test result of pulsed radiation shows that the sensor gives out the optimal photocurrent.

본 연구에서는 광대역 펄스감마선 탐지센서 최적화 설계를 수행하고 설계결과를 기반으로 탐지센서를 제작하여 전기적 특성을 분석하였다. 탐지센서의 최적화 설계를 위해 펄스감마선의 시간에 따른 에너지 프로파일로 부터 입력 변수를 도출하고 탐지감도 제어회로를 통하여 출력전류 범위를 결정하였다. 도출된 변수를 바탕으로 N-type Epi Wafer 및 TCAD(Technology Computer Aided Design)로 설계하고 제작하였다. 제작된 탐지센서의 전기적 특성 분석 결과 -3.3V 전압에서 12pA의 누설전류와 -5V의 전압에서 완전 공핍화 되는 특성을 가짐을 확인하였다. 제작된 센서의 포항가속기연구소 TEST LINAC 시험결과 감마선 설정 선율의 펄스방사선에 대해 고감도의 광전류를 생성시킴을 확인하였다.

Keywords

References

  1. R. D. Evans, The Atomic Nucleus, 1st ed. New York, NY: McGraw-Hill, 1955.
  2. G. C. Messenger, and M. S. Ash, The effects of radiation on electronic systems, 2nd ed. New York, NY: Van Nostrand Reinhold Company Inc., 1992.
  3. L. Cohn, M. Espig, A. Wolicki, M. Simons, C. rogers and A. Costantine, "Transient Radiation Effects on Electronics (TREE) Handbook," Defence Nuclear Agency, Alexandria: VA, Technical Report DNA-H-95-61, 1995.
  4. L. L. Longden, Nuclear Event Detector, US patent 5,687,622, to IRT Corporation, San Diego, 1987.
  5. N. H. Lee, Y. G. Hwang, S. H. Jeong, J. Y. Kim, "An Experimental Analysis for a High Pulse Radiation Induced Latchup Conformation," Journal of The Korea Institute of Information and Communication Engineering, vol. 18, no. 12, pp. 3079-3084, Dec. 2014. https://doi.org/10.6109/jkiice.2014.18.12.3079
  6. A. H. Siedle, L. Adams, Handbook of Radiation Effects, 2nd ed. New York, NY: Oxford University Press Inc., 2002.
  7. S. Glasstone, P. J. Dolan, The Effects of Nuclear Weapons, 3rd ed. United States Department Of Defense, 1977.
  8. S. H. Jeong, N. H. Lee, S. C. Oh, Y. G. Hwang, "Calibration of Pulse Radiation dose using a PIN diode", in Proceedings of the 28th International Technical Conference on Circuits/System, Computers and Communications, Korea, pp. 1119-1121, 2013.