DOI QR코드

DOI QR Code

Low Power Discrete-Time Incremental Delta Sigma ADC with Passive Integrator

수동형 적분기(Passive Integrator)를 이용한 저전력 이산시간 Incremental Delta Sigma ADC

  • Oh, Goonseok (Department of Electronics Engineering, Konkuk University) ;
  • Kim, Jintae (Department of Electronics Engineering, Konkuk University)
  • 오군석 (건국대학교 전자공학부) ;
  • 김진태 (건국대학교 전자공학부)
  • Received : 2016.08.12
  • Accepted : 2016.12.09
  • Published : 2017.01.25

Abstract

This paper presents a low power and high resolution incremental delta-sigma ADC that utilizes a passive integrator instead of an opamp-based active integrator. Opamp is a power-hungry block that involves tight design tradeoffs. To avoid the use of active integrator, the s-domain characteristic of an active integrator is first analyzed. Based on the analysis, an active integrator with low gain design is proposed as an alternative design method. To save power even more aggressively, a passive integrator with no static current is proposed. A 1st order single-bit incremental delta-sigma ADC using the proposed passive integrator is implemented in a 65nm CMOS process. Transistor-level simulation shows that the ADC consumes only 0.6uW under 1.2V supply while achieving SNDR of 71dB with 22kHz bandwidth. The estimated total power consumption including digital filter is 6.25uW, and resulting power efficiency is on a par with state-of-the-art A/D converters.

본 논문에서는 설계 요구가 높고, 전력 소모가 높은 opamp를 이용하는 기존의 능동형 적분기를, 수동형 적분기로 대체하여 고속의 저전력, 고해상도 특성을 갖는 incremental delta-sigma ADC를 소개한다. 능동형 적분기에서 수동형 적분기로의 변환을 위해, 기존의 능동형 적분기의 특성을 분석하였다. 이를 바탕으로 opamp의 설계 요구를 낮추고, 더 나아가 opamp를 사용하지 않는 저전력의 수동형 적분기를 제안하였다. 65nm 공정을 이용하여 수동형 적분기로 구성된 1차 single-bit incremental delta-sigma ADC를 설계하였다. Transistor-level 시뮬레이션 결과, 이는 supply 전압이 1.2V인 상황에서 modulator만 0.6uW, digital filter를 포함한 ADC 전체에서 6.25uW를 소모하며 BW 22KHz, SNDR 71dB, dynamic range 74.6dB을 달성하였다.

Keywords

References

  1. A. Hussain, S. W. Sin, C. H. Chan, S. P. U, F. Maloberti and R. P. Martins, "active-passive ${\Delta}{\Sigma}$ modulator for high-resolution and low-power applications", IEEE Trans. VLSI Syst. vol. PP, Issue 99, pp. 1-11, 2016.
  2. A. Yeknami, F. Qazi and A. Alvandpour, "low-power DT ${\Delta}{\Sigma}$ modulators using SC passive filters in 65 nm CMOS", IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 2, pp. 358-370, 2014. https://doi.org/10.1109/TCSI.2013.2278346
  3. J. Markus, J. Silva and G. C. Temes, "Theory and applications of incremental delta-sigma converters", IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 4, pp. 678-690, 2004. https://doi.org/10.1109/TCSI.2004.826202
  4. J. A. Fredenburg and M. P. Flynn, "A 90-MS/s 11-MHz-bandwidth 62-dB SNDR noise-shaping SAR ADC", IEEE J. Solid-State Circuits, vol. 47, pp. 2898-2904, 2012. https://doi.org/10.1109/JSSC.2012.2217874
  5. Michael H. Perrott - CppSim Reference Manual Version 4.