DOI QR코드

DOI QR Code

Superplasticity of Magnesium Alloys and SPF Applications

마그네슘합금의 초소성 특성과 응용

  • Received : 2016.09.27
  • Accepted : 2016.11.25
  • Published : 2017.01.27

Abstract

Magnesium alloys are of emerging interest in the automotive, aerospace and electronic industries due to their light weight, high specific strength, damping capacity, etc. However, practical applications are limited because magnesium alloys have poor formability at room temperature due to the lack of slip systems and the formation of basal texture, both of which characteristics are attributed to the hcp crystal structure. Fortunately, many magnesium alloys, even commercialized AZ or ZK series alloys, exhibit superplastic behavior and show very large tensile ductility, which means that these materials have potential application to superplastic forming (SPF) of magnesium alloy sheets. The SPF technique offers many advantages such as near net shaping, design flexibility, simple process and low die cost. Superplasticity occurs in materials having very small grain sizes of less than $10{\mu}m$ and these small grains in magnesium alloys can be achieved by thermomechanical treatment in conventional rolling or extrusion processes. Moreover, some coarse-grained magnesium alloys are reported to have superplasticity when grain refinement occurs through recrystallization during deformation in the initial stage. This report reviews the characteristics of superplastic magnesium alloys with high-strain rate and coarse grains. Finally, some examples of SPF application are suggested.

Keywords

References

  1. I.-H. Jung, M. Sanjari, J. Kim and S. Yue, Scr. Mater., 102, 1 (2015). https://doi.org/10.1016/j.scriptamat.2014.12.010
  2. C. Li, H. Sun, X. Li, J. Zhang, W. Fang and Z-Y Tan, J. Alloys Compd., 652, 122 (2015). https://doi.org/10.1016/j.jallcom.2015.08.215
  3. Y.-H. KIM and H.-T. Son, Trans. Nonferrous. Met. Soc. China, 26, 703 (2016).
  4. J. Suh, J. Victoria-Hernandez, D. Letzig, R. Golle, S. Yi, J. Bohlen and W. Volk, J. Mater. Process. Technol., 217, 286 (2015). https://doi.org/10.1016/j.jmatprotec.2014.11.029
  5. X. Huang, K. Suzuki, Y. Chino and M. Mabuchi, J. Alloys Compd., 509, 7579 (2011). https://doi.org/10.1016/j.jallcom.2011.04.132
  6. X. Huang, K. Suzuki, Y. Chino and M. Mabuchi, J. Alloys Compd., 632, 94 (2015). https://doi.org/10.1016/j.jallcom.2015.01.148
  7. L. Zhang, W. Chen, W. Zhang, W. Wang and E. Wang, J. Mater. Process. Technol., 237, 65 (2016). https://doi.org/10.1016/j.jmatprotec.2016.06.005
  8. X. Huang, K. Suzuki, A. Watazu, I. Shigematsu and N. Saito, J. Alloy Compd. 470, 263 (2009). https://doi.org/10.1016/j.jallcom.2008.02.029
  9. S. Pan, Y. Xin, G. Huang, Q. Li, F. Guo and Q. Liu, Mater. Sci. Eng. A, 653, 93 (2016). https://doi.org/10.1016/j.msea.2015.12.002
  10. Y. Chino, K. Sassa, A. Kamiyaa and M. Mabuchi, Mater. Sci. Eng. A, 441, 349 (2016).
  11. M. Kawasaki, R. B. Figueiredo and T. G. Langdon, Adv. Eng. Mater., 18, 127 (2016). https://doi.org/10.1002/adem.201500068
  12. A. Karim, D. L. Holt and W. A. Backfen, Trans. Metall. Soc. AIME, 245, 2421 (1969).
  13. H. K. Lin, J. C. Huang, T. G. Langdon. Mater. Sci. Eng. A, 402, 250 (2005). https://doi.org/10.1016/j.msea.2005.04.018
  14. R. B. Figueiredo and T. G. Langdon, J. Mater. Sci., 45, 4827 (2010). https://doi.org/10.1007/s10853-010-4589-y
  15. R. Lapovok, Y. Estrin, M. V. Popov and T. G. Langdon, Adv. Eng. Mater., 10, 429 (2008). https://doi.org/10.1002/adem.200700363
  16. Y. Miyahara, Z. Horita and T. G. Langdon, Mater. Sci. Eng. A, 420, 240 (2006). https://doi.org/10.1016/j.msea.2006.01.043
  17. Y. Yoshida, K. Arai, S. Itoh, S. Kamado and Y. Kojima, Mater. Trans., 45, 2537 (2004). https://doi.org/10.2320/matertrans.45.2537
  18. R. B. Figueiredo and T. G. Langdon, Adv. Eng. Mater., 10, 37 (2008). https://doi.org/10.1002/adem.200700315
  19. R. Lapovok, R. Cottam, P. F. Thomson and Y. Estrin, J. Mater. Res., 20, 1375 (2005). https://doi.org/10.1557/JMR.2005.0180
  20. T. G. Langon, Metall. Mater. Trans. A, 13, 689 (1982). https://doi.org/10.1007/BF02642383
  21. H. Watanabe, T. Mukai, K. Ishikawa, Y. Okada, M. Kohzu and K. Higashi, J. Jpn. Inst. Light Met. (in Japan), 49, 401 (1999). https://doi.org/10.2464/jilm.49.401
  22. Edited by G. Guiliano, "Superplastic Forming Advanced Metallic Materials : Methods and Applications", pp. 20-22, Woodhead Pub. Oxford UK, (2011).
  23. R. B. Figueiredo, S. Terzi and G. Langdon, Acta Mater., 58, 5737 (2010). https://doi.org/10.1016/j.actamat.2010.06.049
  24. R. Alizadeh, R. Mahmudi, A. H. W. Ngan, Y. Huang and T. G. Langdon, Mater. Sci. Eng. A, 651, 786 (2016). https://doi.org/10.1016/j.msea.2015.10.094
  25. Y. Harai, M. Kai, K. Kaneko, Z. Horita and T. G. Langdon, Mater. Trans., 49, 76 (2008). https://doi.org/10.2320/matertrans.ME200718
  26. S. A. Torbati-Sarraf and T. G. Langdon, Adv. Mater. Res., 922, 767 (2014). https://doi.org/10.4028/www.scientific.net/AMR.922.767
  27. A. S. J. Al-Zubaydi, Mater. Sci. Eng. A, 637, 1 (2015). https://doi.org/10.1016/j.msea.2015.04.004
  28. O. B. Kulyasova, R. K. Islamgaliev, A. R. Kil'mametov and R. Z. Valiev, Phys. Met. Metall., 101, 585 (2006). https://doi.org/10.1134/S0031918X0606010X
  29. T. Masuda, K. Fujimitsu, Y. Takizawa and Z. Horita, J. Jpn Inst. Met. Mater. (in Japanese), 80, 128 (2016).
  30. R. B. Figueiredoa and T. G. Langdona, Scr. Mater., 61, 84 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.012
  31. H. Watanabe, T. Mukai, K. Ishikawa, T. Mohri, M. Mabuchi and K. Hihashi, Mater. Trans., 42, 157 (2001). https://doi.org/10.2320/matertrans.42.157
  32. G. Cao, D. Zhang, F. Chai, W. Zhang and C. Qiu, Adv. Eng. Mater., 28, 312 (2016). https://doi.org/10.1002/adma.201503380
  33. Q. Yang, B. L. Xiao, Z. Y. Ma and R. S. Chen, Scr. Mater., 65, 335 (2011). https://doi.org/10.1016/j.scriptamat.2011.04.041
  34. Q. Yang, B. L. Xiao, Q. Zhang, M. Y. Zheng and Z. Y. Ma, Scr. Mater., 69, 801 (2013). https://doi.org/10.1016/j.scriptamat.2013.09.001
  35. G. Garces, M. Maeso, P. Perez and P. Adeva, Mater. Sci. Eng. A, 462, 127 (2007). https://doi.org/10.1016/j.msea.2006.05.172
  36. H. Watanabe, T. Mukai, K. Ishikawa, M. Mabuchi and K. Higashi, Mater. Sci. Eng. A, 497, 326 (2008). https://doi.org/10.1016/j.msea.2008.07.024
  37. H. Watanabe, T. Mukai, K. Ishikawa, M. Mabuchi and K. Higashi, Mater. Sci. Eng. A, 307, 119 (2001). https://doi.org/10.1016/S0921-5093(00)01974-2
  38. W. J. Kim, I. K. Moon and S. H. Han, Mater. Sci. Eng. A, 538, 374 (2012). https://doi.org/10.1016/j.msea.2012.01.063
  39. X. Liu, G. Du, R. Wu, Z. Niu and M. Zhang, J. Alloys Compd., 509, 9558 (2011). https://doi.org/10.1016/j.jallcom.2011.07.081
  40. W. J. Kim, S. W. Chung, C. W. An, J. Mater. Sci. Lett., 20, 1635 (2001). https://doi.org/10.1023/A:1017970431741
  41. T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa, et al, Mater. Sci. Eng. A, 290, 139 (2000). https://doi.org/10.1016/S0921-5093(00)00959-X
  42. L. Li, X. Zhang, Y. Deng and C. Tang, J. Alloys Compd., 485, 295 (2009). https://doi.org/10.1016/j.jallcom.2009.06.113
  43. L. Li and X.-M. Zhang, Trans. Nonferrous Met. Soc. China, 21, 1491 (2011). https://doi.org/10.1016/S1003-6326(11)60886-8
  44. J. L. Li, D. Wu, Q. B. Yang and R. S. Chen, J. Alloys Compd., 672, 27 (2016). https://doi.org/10.1016/j.jallcom.2016.02.132
  45. X. Wu, Y. Liu, Scr. Mater., 46, 269 (2002). https://doi.org/10.1016/S1359-6462(01)01234-9
  46. K. Lin, Z. Kang, Q. Fang and J. Zhang, Adv. Eng. Mater., 16, 381 (2014). https://doi.org/10.1002/adem.201300302
  47. Fadi K. Abu-Farha; Ph.D thesis, "Integrated Approach to the Superplastic forming of Magnesium Alloys", College of Eng., Univ. of Kentucky, (2007).
  48. Industrial Technology Institute of Ibaraki Prefecture, Technical Report (in Japanese), No. 37, (2008).
  49. W. J. Kim, J. D. Park and U. S. Yoon, J. Alloy Compd., 464, 197 (2008). https://doi.org/10.1016/j.jallcom.2007.10.067
  50. Nippi Co. Ltd., Sokeizai (in Japanese), 53, 19 (2012).