DOI QR코드

DOI QR Code

Robust Trajectory Tracking Control of a Mobile Robot Based on Weighted Integral PDC and T-S Fuzzy Disturbance Observer

하중 적분 PDC와 T-S 퍼지 외란 관측기를 이용한 이동 로봇의 강인 궤도 추적 제어

  • Baek, Du-san (Department of Electrical Engineering, Changwon National University) ;
  • Yoon, Tae-sung (Department of Electrical Engineering, Changwon National University)
  • Received : 2016.11.16
  • Accepted : 2016.12.08
  • Published : 2017.02.28

Abstract

In this paper, a robust and more accurate trajectory tracking control method for a mobile robot is proposed using WIPDC(Weighted Integral Parallel Distributed Compensation) and T-S Fuzzy disturbance observer. WIPDC reduces the steady state error by adding weighted integral term to PDC. And, T-S Fuzzy disturbance observer makes it possible to estimate and cancel disturbances for a T-S fuzzy model system. As a result, the trajectory tracking controller based on T-S Fuzzy disturbance observer shows robust tracking performance. When the initial postures of a mobile robot and the reference trajectory are different, the initial control inputs to the mobile robot become too large to apply them practically. In this study, also, the problem is solved by designing an initial approach path using a path planning method which employs $B\acute{e}zier$ curve with acceleration limits. Performances of the proposed method are proved from the simulation results.

본 논문에서는 하중 적분 PDC 제어 기법과 T-S 퍼지 외란 관측기를 이용한 강인하면서도 보다 정확한 이동 로봇의 궤도 추적 제어 방법을 제안한다. 하중 적분 PDC 제어 기법은 PDC 제어 기법에 하중 적분 항을 추가함으로써 정상상태 오차를 감소시켜 준다. T-S 퍼지 외란 관측기는 T-S 퍼지 모델로 표현된 비선형 시스템에 대해 외란을 추정하고 상쇄시킬 수 있도록 한다. 따라서, T-S 퍼지 외란 관측기에 기반한 궤도 추적 제어기는 강인한 궤도 추적 성능을 보여준다. 또한, 본 연구에서는 $B\acute{e}zier$ 곡선에 의한 가속도 제한을 갖는 경로 설계 방법에 의해 초기 접근 경로를 설계함으로써, 이동 로봇의 초기 위치가 기준 궤도의 초기 위치와 다를 때 제어 입력이 매우 커지게 되어 실제적으로 사용할 수 없게 되는 문제를 해결한다. 제안된 궤도 추적 제어기의 성능을 시뮬레이션을 통해서 입증하였다.

Keywords

References

  1. Y. Kanayama, Y. Kimura, F. Miyazaki and T. Noguchi, "A stable tracking control method for an autonomous mobile robot," 1990 IEEE International Conference on Robotics and Automation, vol. 1, Cincinnati, pp. 384-389, 1990.
  2. G. Klancar and I. Skrjanc, "Tracking-error model-based predictive control for mobile robots in real time," Robotics and autonomous Systems, vol. 55, pp. 460-469, Jun. 2007. https://doi.org/10.1016/j.robot.2007.01.002
  3. E. H. Guechi, J. Lauber, M. Dambrine, S. Blazic and G. Klancar, "Tracking-error model-based PDC control for mobile robots with acceleration limits," FUZZ-IEEE 2009, Korea, pp. 197-202, Aug. 2009.
  4. E. H. Guechi, J. Lauber, M. Dambrine, G. Klancar and S. Blazic, "PDC control design for non-holonomic wheeled mobile robots with delayed outputs," Journal of Intelligent & Robotic Systems, vol. 60, pp. 395-414, Apr. 2010. https://doi.org/10.1007/s10846-010-9420-0
  5. T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Transactions on Systems, Man, and Cybernetics, vol. 15, no. 1, pp. 116-132, Jan.-Feb. 1985.
  6. K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis : A Linear Matrix Inequality Approach, John Wiley & Sons, Inc., New York, 2001.
  7. G. Feng, "A survey on analysis and design of model-based fuzzy control," IEEE Transactions on Fuzzy Systems, vol. 14, no.5, pp. 676-697, Oct. 2006. https://doi.org/10.1109/TFUZZ.2006.883415
  8. S. K. Lee, S. K. Park, T. S. Yoon, K. P. Kwak and H. K. Ahn, "Robustness improvement of T-S fuzzy H-infinity control using weighted integral action," Proceedings of CSECS '13, World Scientific and Engineering Academy Society, Budapest, 71003-250, Dec. 2013.
  9. W. H. Chen and L. Guo, "Analysis of disturbance observer based control for nonlinear systems under disturbances with bounded variation," Proceedings of Control 2004, UK, Sep. 2004.
  10. H. Kobayashi, S. Katsura and K. Ohnishi, "An analysis of parameter variations of disturbance observer for motion control," IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 3413-3421, Dec. 2007. https://doi.org/10.1109/TIE.2007.905948
  11. W. H. Chen, J. Yang, L. Guo and S. Li, "Disturbance observer based control and related methods - an overview," IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 1083-1095, Feb. 2016. https://doi.org/10.1109/TIE.2015.2478397
  12. M. C. Kim, X. K. Li, S. K. Park, G. P. Kwak, H. K. Ahn and T. S. Yoon, "Robust control of IPMSM using T-S fuzzy disturbance observer," J. Korea Inst. Inf. Commun. Eng., vol. 19, no. 4 , pp. 973-983, Apr. 2015. https://doi.org/10.6109/jkiice.2015.19.4.973
  13. M. S. Park, S. K. Park, H. K. Ahn, G. P. Kwak and T. S. Yoon, "Robust Trajectory Tracking Control of a Mobile Robot Combining PDC and Integral Sliding Mode Control," J. Korea Inst. Inf. Commun. Eng., vol. 19, no. 7, pp. 1694-1704, Jul. 2015. https://doi.org/10.6109/jkiice.2015.19.7.1694
  14. C. J. Kim, J. W. Kwon and D. Chwa, "Polynomial fuzzy modeling and tracking control of wheeled mobile robots via sum of squares approach," in Proceeding of ICIT 2009, IEEE, Gippsland, pp. 973-977, Feb. 2009.
  15. M. Lepetic, G. Klancer, I. Skrjanc, D. Matko and B. Potocnik, "Time optimal path planning considering acceleration limits," Robotics and Autonomous Systems, vol. 45, pp. 199-210, Dec. 2003. https://doi.org/10.1016/j.robot.2003.09.007
  16. E. H. Guechi, J. Lauber and M. Dambrine, "On-line moving-obstacle avoidance using piecewise Bézier curves with unknown obstacle trajectory," 16th Mediterranean Conference on Cotrol and Automation, Congress Centre, Ajaccio, France, pp. 505-510, Jun. 2008.
  17. K.G. Jolly, R. Sreerama Kumar and R. Vijayakumar, "A Bezier curve based path planning in a multi-agent robot soccer system without violating the acceleration limits," Robotics and Autonomous Systems, vol. 57, pp. 23-33, Jan. 2009. https://doi.org/10.1016/j.robot.2008.03.009
  18. R. Siegwart, I. R. Nourbakhsh and D. Scaramuzza, Introduction to Autonomous Mobile Robots, 2nd. ed., The MIT Press, Cambridge, 2011.