DOI QR코드

DOI QR Code

Fast locking single capacitor loop filter PLL with Early-late detector

Early-late 감지기를 사용한 고속 단일 커패시터 루프필터 위상고정루프

  • Ko, Ki-Yeong (Department of Electronic Engineering, Pukyong National University) ;
  • Choi, Yong-Shig (Department of Electronic Engineering, Pukyong National University)
  • Received : 2016.08.12
  • Accepted : 2017.01.30
  • Published : 2017.02.28

Abstract

A novel structure of phase locked loop (PLL) which has small size and fast locking time with Early-late detector, Duty-rate modulator, and Lock status indicator (LSI) is proposed in this paper. The area of loop filter usually occupying the larger portion of the chip is minimized using a single small capacitor. While the conventional PLL with a single capacitor loop filter cannot work stably, the proposed PLL with two charge pumps works stably because the output voltage waveform of the proposed a single capacitor loop filter is the same as the output voltage waveform of the conventional 2nd-order loop filter. The two charge pumps are controlled by the Early-late detector which detects early-late status of UP and DN signals, and Duty-rate modulator which generates a steady duty-rate signal. Fast locking time is achieved using LSI. It has been simulated and proved by HSPICE in a CMOS $0.18{\mu}m$ 1.8V process.

본 논문에서는 Early-late detector, Duty-rate modulator, 그리고 LSI(Lock Status Indicator)를 사용하여 작은 크기와 빠른 위상고정 시간을 갖는 위상고정루프를 제안하였다. 제안된 위상고정루프는 작은 용량을 가진 하나의 커패시터를 사용하게 됨으로써 칩의 크기를 결정하는 루프필터의 크기가 작아지게 되어 크기를 최소화 하였다. 기존의 전하펌프와 달리 2개의 전하펌프를 사용하여 하나의 커패시터를 사용하더라도 2차 루프필터를 사용 한 것과 같은 전압파형을 만들어 줌으로써 위상을 고정시킬 수 있다. 2개의 전하펌프는 UP, DN신호 위상의 빠르기를 감지해주는 Early-late detector와 일정한 비율의 파형을 만들어주는 Duty-rate modulator에 의해 제어된다. LSI회로를 사용함으로써 빠른 위상고정시간을 얻을 수 있다. 제안된 위상고정루프는 1.8V $0.18{\mu}m$ CMOS 공정을 사용하여 설계하였고, Hspice 시뮬레이션을 통해 회로의 동작을 검증하였다.

Keywords

References

  1. P. K. Hanumolu, M. Brownlee, K. Mayaram and U. K. Moon, "Analysis of Charge-Pump Phase-Locked Loops," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 9, pp. 1665-1674, Sep. 2004. https://doi.org/10.1109/TCSI.2004.834516
  2. J. Craninckx and M. Steyaert, "A fully integrated CMOS DCS-1800 frequency synthesizer," IEEE International Solid-State Circuits Conference. Digest of Technical Papers, vol. 33, no. 12, pp. 2054-2065, Dec. 1998.
  3. Y. Koo, H. Huh, Y. Cho, J. Lee, J. Park, D. Jeong, and W. Kim, "A fully integrated CMOS frequency synthesizer with charge-averaging charge pump and dual-path loop filter for PCS- and cellular-CDMA wireless systems," IEEE Journal of Solid-State Circuits, vol. 37, no. 5, pp. 536-542, May 2002. https://doi.org/10.1109/4.997845
  4. B. Catli, A. Nazemi, T. Ali, S. Fallahi, Y. Liu, J. Kim, M. Abdul-Latif, M. R. Ahmadi, H. Maarefi, A. Momtaz, and N. Kocaman, "A 2sub-200 fs RMS jitter capacitor multiplier loop filter-based PLL in 28 nm CMOS for high-speed serial communication applications," Custom Integrated Circuits Conference, pp. 1-4, 2013.
  5. M. Ghasemzadeh, S. Mahdavi, A. Zokaei, K. Hadidi, "A New Adaptive PLL to Reduce the Lock Time in 0.18${\mu}m$ technology," MIXDES - 23rd International Conference Mixed Design of Integrated Circuits and Systems, pp. 140-142, June 2016.
  6. J. Dunning et al., "An all-digital phase-locked loop with 50-cycle lock time suitable for high-performance microprocessors," IEEE Journal of Solid-State Circuits, vol. 30, no. 4, pp. 412-422, Apr. 1995. https://doi.org/10.1109/4.375961
  7. Y. S. Choi, S. J. An, "Loop filter voltage variation compensated PLL with charge pump," Journal of Korea Institute of Information and Communication Engineering, vol. 20, no. 10, pp. 1935-1940, Oct. 2016. https://doi.org/10.6109/jkiice.2016.20.10.1935
  8. Y. S. Choi, H. H. Choi, T. H. Kwon, "An Adaptive Bandwidth Phase Locked Loop with Locking Status Indicator," Proceedings. The 9th Russian-Korean International Symposium on Science and Technology, pp. 826-829, July 2005.