DOI QR코드

DOI QR Code

Design of 1.0V O2 and H2O2 based Potentiostat

전원전압 1.0V 산소 및 과산화수소 기반의 정전압분극장치 설계

  • Received : 2016.10.04
  • Accepted : 2016.10.30
  • Published : 2017.02.28

Abstract

In this paper, a unified potentiostat which can measure the current of both $O_2$-based and $H_2O_2$-based blood glucose sensors with low supply voltage of 1.0V has been designed and verified by simulations and measurements. Potentiostat is composed of low-voltage operational transconductance amplifier, cascode current mirrors and mode-selection circuits. It can measure currents of blood glucose chemical reactions occurred by $O_2$ or $H_2O_2$. The body of PMOS input differentional stage of the operational transconductance amplifier is forward-biased to reduce the threshold voltage for low supply voltage operation. Also, cascode current mirror is used to reduce current measurement error generated by channel length modulation effects. The proposed low-voltage potentiostat is designed and simulated using Cadence SPECTRE and fabricated in Magnachip 0.18um CMOS technology with chip size of $110{\mu}m{\times}60{\mu}m$. The measurement results show that consumption current is maximum $46{\mu}A$ at supply voltage of 1.0V. Using the persian potassium($K_3Fe(CN)_6$) equivalent to glucose, the operation of the fabricated potentiostat was confirmed.

본 논문에서는 전원전압 1V에서 동작하는 산소 및 과산화수소 기반의 혈당전류를 측정할 수 있는 통합형 정전압분극장치를 설계하고 제작하였다. 정전압분극장치는 저전압 OTA, 캐스코드 전류거울 그리고 모드 선택회로로 구성되어 있다. 정전압분극장치는 산소 및 과산화수소 기반에서 혈당의 화학반응으로 발생하는 전류를 측정할 수 있다. OTA의 PMOS 차동 입력단의 바디에는 순방향전압을 인가하여 문턱전압을 낮추어 낮은 전원전압이 가능하도록 하였다. 또한 채널길이변조효과로 인한 전류의 오차를 줄이기 위해 캐스코드 전류거울이 사용되었다. 제안한 저전압 정전압분극장치는 Cadence SPECTRE를 이용하여 설계하였으며, 매그나칩 $0.18{\mu}m$ CMOS 공정을 이용하여 제작되었으며 회로의 크기는 $110{\mu}m{\times}60{\mu}m$이다. 전원전압 1.0V에서 소모전류는 최대 $46{\mu}A$이다. 페리시안화칼륨($K_3Fe(CN)_6$)을 사용하여 제작된 정전압분극장치의 성능을 확인하였다.

Keywords

References

  1. B.K. Lee, "Smart key that opens the smart healthcare markets, Mobile medical devices," The Optical journal, vol. 156, pp. 41-51, Mar. 2015.
  2. S.I. Lim, "Potentiostat circuits for amperometric sensor," Journal of Sensor Science and Technology, vol. 18, no.1, pp. 95-101, January 2009. https://doi.org/10.5369/JSST.2009.18.1.095
  3. K.S. Sohn, S.J. Oh, E.J. Kim, J.M. Gim, N.S. Kim, J.W Kim and Y.S. Kim, "A Unified Potentiostat for Electrochemical Glucose Sensors," Transactions on Electrical and Electronic Materials, vol. 14, no. 5, pp. 273-277, Oct. 2013. https://doi.org/10.4313/TEEM.2013.14.5.273
  4. E. Wilkins. and P. Atanasov. , "Glucose monitoring: state of the art and future possibilities," Medical engineering & physics, vol. 18, no. 4, pp. 273-288, June 1996. https://doi.org/10.1016/1350-4533(95)00046-1
  5. R. F. Turner, D. J. Harrison, and H. P. Baltes,, "A CMOS potentiostat for amperometric chemical sensors," IEEE Journal of Solid-State Circuits, vol. 22, no.3, pp. 473-478, June 1987. https://doi.org/10.1109/JSSC.1987.1052753
  6. M. M., Ahmadi, and G.A. Jullien, "Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors," IEEE Transactions on Circuits and Systems I, vol. 56, no.7, pp. 1339-1348, July 2009. https://doi.org/10.1109/TCSI.2008.2005927
  7. H.I. Seo, P. Choi, B.K. Sohn "Design of potentiostat & I-V converter for micro pO2 sensor," Journal of Sensor Science and Technology, vol. 3, no.3, pp. 22-27, 1994.
  8. M. M. Ahmadi, and G.A. Jullien, "A very low power CMOS potentiostat for bioimplantable applications," in Proceedings of System-on-Chip for Real-Time Applications, Banff: Alberta, pp.184-189, 2005.
  9. V. Gau, S. C. Ma, H. Wang, J. Tsukuda, J. Kibler, and D. A. Haake, "Electrochemical molecular analysis without nucleic acid amplification," Methods, vol.37, no.1, pp. 73-83, Oct. 2005. https://doi.org/10.1016/j.ymeth.2005.05.008
  10. M. Duwe and T. Chen, "Low power integrated potentiostat design for ${\mu}$ electrodes with improved accuracy," in Proceedings of the IEEE 54th International Midwest Symposium on Circuits & Systems, Seoul: Seoul, pp.1-4, 2011.