DOI QR코드

DOI QR Code

A Design and Implementation of Busbar Joint and Temperature Measurement System

부스바 접촉 상태 및 온도 감지 시스템 설계 및 구현

  • Received : 2016.11.08
  • Accepted : 2016.12.23
  • Published : 2017.02.28

Abstract

In general, distribution board, panel board and motor control center can be installed over a wide area such as residence of group, building, schools, factories, ports, airports, water service and sewerage, substation and heavy industries that are used to supply converts the voltages extra high voltage into optimal voltage. There are electrical accidents due to rise of contact temperature, loose contact between busbar, deterioration of the contact resistance, over temperature of the busbars. In this paper, we designed and implemented the busbar joint and temperature measurement system, which can measure the joint resistance of busbar and loose connection between busbar using potentiometer and non-contact infrared sensor. The experimental results show that tightening the bolt and nut is fully engaged, resistance was decreased and maximum error range was 0.1mm. Also, the experimental result showed that the temperature at the contact area is increased from $27.3^{\circ}C$ to $69.3^{\circ}C$by the contact resistance.

일반적으로 배전반, 분전반, 전동기제어반(Motor Control Center; MCC)은 집단거주지역, 빌딩, 학교, 공장, 항만, 공항, 상하수 처리장, 변전소, 중공업 플랜트 등의 광범위한 전력 수용가에 설치되어 특고압의 전력을 해당 설비들에 요구되는 전압으로 변환하여 공급하는데 사용된다. 이와 같은 배전반, 분전반, MCC에 포함되는 전기설비의 사고는 부스바 접촉부의 열화에 의한 사고, 부스바의 접점 및 연결 부위에서의 접촉 불량에 의한 사고, 부스바 접촉부의 과열현상에 의한 사고로 구분된다. 본 논문에서는 부스바 접촉부의 볼트 및 너트의 풀림상태, 접촉부 열화 측정이 가능하며, 정밀 가변저항을 이용하여 저항값의 변화에 따라 볼트 체결상태 감지 및 비접촉식 적외선 센서를 사용하여 부스바 접촉부 온도 감지 시스템을 설계하고 구현하였다. 부스바 접촉부 체결상태 감지를 위한 가변저항을 이용한 실험을 수행한 결과 볼트와 너트를 완전히 체결시키면 가변저항 값은 감소하였으며, 최대 오차범위는 0.1mm의 결과를 보였다. 또한, 부스바 접촉 저항값 변화에 따라 접촉부 온도가 $27.3^{\circ}C$에서 $69.3^{\circ}C$로 상승하는 결과를 확인하였다.

Keywords

References

  1. G. G. Seip, Electrical Installations Handbook, 3rd ed. Erlangen and Munich, John Wiley and Sons, 2000.
  2. X. Zhou, T. Schoepf, "Characteristics of overheated electrical joints due to loose connection," in 2011 IEEE 57th Holm Conference on Electrical Contacts (Holm), pp. 1-7, 2011.
  3. Y. M. Kwon, C. Y. Hwang, K. H. Kim, H. Han, "The Structural Design of the Bus-bar block type of electrical switch boards," Journal of the Korea Academia-Industrial, vol. 17, no. 2, pp. 378-38, Feb. 2016.
  4. J. Gatherer, "A Study of the Effect of Various Material Combinations on the Bolted Contacts of Busbars," Ph. D. dissertation, Auburn University, 2013.
  5. S. D. Kim, "A study on sensing for abnormality of BUS BAR in motor control center," Journal of the Korea Academia- Industrial Cooperation Society, vol. 12, no. 12, pp. 5838- 5842, Dec. 2011. https://doi.org/10.5762/KAIS.2011.12.12.5838
  6. S. H. Jeong, Y. D. Lee, "Design of Busbar Joint Condition Monitoring System," in Proceedings of the Korea Institute of Information and Communication Engineering, Korea, 2016.
  7. J. Gatherer, "A Study of the Effect of Various Material Combinations on the Bolted Contacts of Busbars," Master Thesis, Auburn University, Auburn, Alabama, 2013.
  8. M. Braunovic, "Effect of connection design on the contact resistance of high power overlapping bolted joints," IEEE transactions on components and packaging technologies, vol. 25, no. 4, pp. 642-650, Dec. 2002. https://doi.org/10.1109/TCAPT.2003.809108
  9. S. Schoft, "Joint resistance depending on joint force of high current aluminum joints," in Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts, pp. 502- 510, 2004.

Cited by

  1. Improvement of Heat Dissipation Characteristics of Cu Bus-Bar in the Switchboards through Shape Modification and Surface Treatment vol.12, pp.1, 2019, https://doi.org/10.3390/en12010146