DOI QR코드

DOI QR Code

Robust Tracking and Human-Compliance Control Using Integral SMC and DOB

적분슬라이딩모드와 DOB를 이용한 강인추종 및 인간순응 로봇제어

  • Asignacion Jr., Abner (Department of Electrical Engineering, Changwon National University) ;
  • Kim, Min-chan (Department of Electrical Engineering, Changwon National University) ;
  • Kwak, Gun-Pyong (Department of Electrical Engineering, Changwon National University) ;
  • Park, Seung-kyu (Department of Electrical Engineering, Changwon National University)
  • Received : 2016.11.29
  • Accepted : 2016.12.19
  • Published : 2017.02.28

Abstract

The robot control with safety consideration is required since robots and human work together in the same space more frequently in these days. For safety, robots must have compliance to human force and robust tracking performance with high impednace for the nonhuman disturbances. The novel idea is proposed to achieve the compliance and high impedance with one controller structure. For the compliance, the ISMC(Integral Sliding Mode Control) and HDOB(Human Disturbance Observer) The human force is identified by using the human band pass filter and its output is sent to the sliding surface. The sliding mode dynamic is affected by human disturbance and the compliance for human is achieved. The disturbances besides human frequencies are decoupled by the ISMC and the robust tracking is achieved. The additional LDOB(Low Frequency Disturbance Observer) decreases the maxim nonlinear gain and leads low chattering. The introduction of human disturbance into the sliding mode dynamic is the main novel idea of this paper.

인간과 로봇이 같은 공간에서 작업을 할 경우가 많아짐에 따라 안전성을 고려한 로봇의 제어가 필요하다. 안정성을 위해서 로봇은 인간의 힘에 순응해야 함으로 낮은 임피던스가 요구되는 반면에 높은 제어성능을 갖도록 하기 위해서는 외란에 강인하기 위해서는 높은 임피던스가 요구된다. 이러한 이율배반적인 목적을 달성하기 위해서 본 연구에서는 적분슬라이딩모드와 외란관측기(DOB)를 사용하여 인간의 힘 이외의 외란에는 강인한 특성을 보이고 인간의 힘에는 순응할 수 있는 제어기를 설계한다. 인간의 동작이 특정 주파수의 범위에 있다는 사실에 근거하여 인간에 의한 외란인 경우의 외란에 대해서는 로봇이 순응하도록 슬라이딩모드를 설계하는 것이 본 논문의 독창적인 아이디어이다.

Keywords

References

  1. A. Blomdell, G. Bolmsjo, T. Brogarth, P. Cederberg, Isaksson, R. Johansson, M. Haage, K. Nilsson, M. Olsson, T. Olsson, A. Robertsson, and J. Wang, "Extending an industrial robot controller: Implementation and applications of a fast open sensor interface," IEEE Robotics & Automation Magazine, vol. 12, no. 3, pp. 85-94, Sep. 2005. https://doi.org/10.1109/MRA.2005.1511872
  2. H. Yu, S. Huang, G. Chen, Y. Pan, and Z. Guo, "Human- Robot Interaction Control of Rehabilitation Robots with Series Elastic Actuators," IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1089-1100, Oct. 2015. https://doi.org/10.1109/TRO.2015.2457314
  3. S. Viteckova, P. Kutilek, and M. Jirina, "Wearable lower limb robotics: A review," Biocybernetics and Biomedical Engineering, vol. 33, no. 2, pp. 96-105, May 2013. https://doi.org/10.1016/j.bbe.2013.03.005
  4. A. Calanca, R. Muradore, and P. Fiorini, "A Review of Algorithms for Compliant Control of Stiff and Fixed-Compliance Robots," IEEE-ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 613-624, Apr. 2016. https://doi.org/10.1109/TMECH.2015.2465849
  5. N. Hogan, "Impedance Control: An Approach to Manipulation," Department of Mechanical Engineering and Laboratory of Manufacturing and Productivity Massachusetts Institute of Technology, 1984.
  6. J. Garcia, A. Robertsson, J. Ortega, and R. Johnasson, "Sensor Fusion for Compliant robot motion control," IEEE Transactions on Robotics, vol. 24, no. 2, pp. 430-441, Apr. 2008. https://doi.org/10.1109/TRO.2008.918057
  7. S. Oh, H. Woo, and H. K. Kong, "Frequency-Shaped Impedance Control for Safe Human-Robot Interaction in Reference Tracking Application," IEEE/ASME Transactions on Mechatronics, vol. 19, no. 6, pp. 1907-1916, Dec. 2014. https://doi.org/10.1109/TMECH.2014.2309118
  8. A. Godfrey, R. Conway, D.Meagher, and G. O Laighin, "Direct measurement of human movement by accelerometry," Medical Engineering and Physics, vol. 30, no. 10, pp. 1364-1386, Dec. 2008. https://doi.org/10.1016/j.medengphy.2008.09.005
  9. D. A. Winter, Biomechanics and Motor Control of Human Movement, New York, NY, USA: Wiley, 2009.
  10. S. G. Khan, and J. Jalani, "Realization of model reference compliance of a humanoid robot arm via integral sliding mode control," Mechanical Sciences, vol. 7, no. 1, pp. 1-8, Jan. 2016. https://doi.org/10.5194/ms-7-1-2016
  11. T. Umeno, and Y. Hori, "Robust speed control of DC servomotors using modern two-degree-of-freedom controller design," IEEE Transactions on industrial electronics, vol. 38, no. 5, pp. 363-368, Oct. 1991. https://doi.org/10.1109/41.97556
  12. W. H. Chen, J. Yang, L. Guo, and S. Li, "Disturbance- Observer-Based Control and Related Methods-An Overview," IEEE Transactions on industrial electronics, vol. 63, no. 2, pp. 1083-1095, Feb. 2016. https://doi.org/10.1109/TIE.2015.2478397
  13. Y. J. Choi, K. J. ,Yang, W. K. Kyun, H. R. Kim, and I. L. Suh, "On the Robustness and Performance of Disturbance Observers for Second-Order Systems," IEEE Transactions on Automatic Control, vol. 48, no. 2, pp. 315-320, Feb. 2003. https://doi.org/10.1109/TAC.2002.808491
  14. R. Silva Viego, and Ashok, R., “Comparative Study of PDController (Vs.) Integral Sliding Mode Control on 5-Link 2DOF Planar,” in Proceeding of IEEE Southeastcon, pp. 1-6,Apr. 2013.
  15. D. S. You, “Integral Sliding Mode Control for RobotManipulators,” Journal of Institute of Control, Robotics andSystems, vol. 14, no. 12, pp.1266-1269, Dec. 2008. https://doi.org/10.5302/J.ICROS.2008.14.12.1266
  16. V. Utkin, and J Shi, “Integral Sliding Mode in SystemsOperating under Uncertainty Conditions,” in Proceeding ofthe 35th IEEE Conference on Decision and Control, vol. 4,pp. 4591-4596, 1996.
  17. R. Naoual, E. M. Mellouli, and I. Boumhidi, “Adaptivefuzzy sliding mode control for the two-link robot,” inProceeding of the 9th International Conference onIntelligent Systems: Theories and Applications (SITA-14),pp. 1-6, 2014.
  18. J. Baek, M. Jin, and S. Han, “A new Adaptive Sliding-ModeControl Scheme for Application to Robot Manipulator,”IEEE Transactions on industrial electronics, vol. 63, no. 6,pp. 3628-3637, Jun. 2016. https://doi.org/10.1109/TIE.2016.2522386