DOI QR코드

DOI QR Code

T Wave Detection Algorithm based on Target Area Extraction through QRS Cancellation and Moving Average

QRS구간 제거와 이동평균을 통한 대상 영역 추출 기반의 T파 검출 알고리즘

  • Cho, Ik-sung (Department of Information and Communication Engineering, Kyungwoon University) ;
  • Kwon, Hyeog-soong (Department of IT Engineering, Pusan National University)
  • Received : 2016.09.22
  • Accepted : 2016.10.18
  • Published : 2017.02.28

Abstract

T wave is cardiac parameters that represent ventricular repolarization, it is very important to diagnose arrhythmia. Several methods for detecting T wave have been proposed, such as frequency analysis and non-linear approach. However, detection accuracy is at the lower level. This is because of the overlap of the P wave and T wave depending on the heart condition. We propose T wave detection algorithm based on target area extraction through QRS cancellation and moving average. For this purpose, we detected Q, R, S wave from noise-free ECG(electrocardiogram) signal through the preprocessing method. And then we extracted P, T target area by applying decision rule for four PAC(premature atrial contraction) pattern another arrhythmia through moving average and detected T wave using RT interval and threshold of RR interval. The performance of T wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 95.32%.

T파는 심장의 심실의 재분극을 나타내는 파라미터로써 부정맥 진단에 있어 매우 중요하다. T 파를 검출하기 위한 기존 연구방법으로는 주파수 분석과 비선형 접근방법 등이 제안되어 왔지만 검출 정확도가 낮다는 문제점이 있다. 이는 T파의 경우 P파와 중복되는 경우가 발생하기 때문이다. 본 연구에서는 QRS 구간을 제거한 후, 이동평균을 통한 P파와 T파의 대상 영역을 추출하여 정확히 T파를 검출하는 알고리즘을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 Q, R, S를 검출한다. 이후 검출된 QRS 구간을 제거, 이동평균을 통해 4개의 PAC 패턴과 기타부정맥에 대한 판단규칙을 적용하여 P, T파의 대상 영역을 추출하고, 이를 대상으로 RR 간격과 RT 간격의 문턱치를 적용하여 T파를 검출하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 48개의 레코드를 대상으로 한 T파의 평균 검출율은 95.32%의 성능을 나타내었다.

Keywords

References

  1. A. Alwan, "Global Status Report on Noncommunicable Diseases 2010," World Health Organization, Switzerland : Geneva 27, Technical Report WT 500, 2011.
  2. P. E. Dilaveris, et al, "Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation," American. Heart Journal, vol. 135, pp. 733- 738, May 1998. https://doi.org/10.1016/S0002-8703(98)70030-4
  3. M. G. Tsipouras, D.I. Fotiadis, D. Sideris, "Arrhythmia classification using the RR-interval duration signal," In Proceedings of 2002 Computers in Cardiology, pp. 485- 488, Sept. 2002.
  4. T. Thong, J. McNames, M. Aboy, B. Doldstein, "Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes," IEEE Transactions on Biomedical Engineering. vol. 51, pp. 561-569, April 2004. https://doi.org/10.1109/TBME.2003.821030
  5. P. D. Chazal, M. O'Dwyer, R.B. Reilly, "Automatic classification of heartbeats using ECG morphology and heartbeat interval features," IEEE Transactions on Biomedical Engineering, vol.51, pp.1196-1206, July 2004. https://doi.org/10.1109/TBME.2004.827359
  6. V. T. Krasteva, I. I. Jekova, I. I. Christov, "Automatic detection of premature atrial contractions in the electrocardiogram," Journal of Electrical Engineering and Electronic Technology, vol. 9-10, pp. 49-55, November 2006.
  7. U. Scholz, A. Bianchi, S. Cerutti, S. Kubicki, "Vegetative background of sleep: Spectral analysis of the heart rate variability," Physiology & Behavior, vol. 62, pp. 1037-1043, Nov. 1997. https://doi.org/10.1016/S0031-9384(97)00234-5
  8. J. Trinder, et al, "Autonomic activity during human sleep as a function of time and sleep stage," Journal of Sleep Research, vol. 10, pp. 253-264, Dec. 2001. https://doi.org/10.1046/j.1365-2869.2001.00263.x
  9. L. Zapanta, C. Poon, D. White, C. Marcus, E. Kaltz, "Heart rate chaos in obstructive sleep apnea in children," In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS''04), San Francisco, CA, USA, vol. 1-5, pp. 3889-3892, September 2004.
  10. I. S. Cho, H. S.Kwon, J.O. Yun, "Detection of QRS Feature Based on Phase Transition Tracking for Premature Ventricular Contraction Classification," Journal of Korea Institute of Information and Communication Engineering, vol. 20, no. 2, pp. 427-436, February 2016. https://doi.org/10.6109/jkiice.2016.20.2.427
  11. H. Roskamm, G. Csapo, Disorders of Cardiac Function, New York, Marcel Dekker, 1982.
  12. A. Gacek, W. Pedrcyz, ECG Signal processing, classification and interpretation, London, Springer, 2012.
  13. T. Azeem, M. Vassallo, and N. J. Samani, Rapid Review of ECG Interpretation, Boca Raton, FL: Manson Publishing, 2005.