DOI QR코드

DOI QR Code

Immune-Enhancing Effects of Polysaccharides Isolated from Phellinus linteus Mycelium on Mori ramulus

상지에 배양한 상황버섯 균사체로부터 분리된 다당류의 면역증강 효과

  • Park, Hye-Mi (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Hong, Joo-Heon (Department of Food Science and Technology, Catholic University of Daegu)
  • 박혜미 (대구가톨릭대학교 식품공학전공) ;
  • 홍주헌 (대구가톨릭대학교 식품공학전공)
  • Received : 2016.09.27
  • Accepted : 2016.11.11
  • Published : 2017.01.31

Abstract

The objective of this study was to examine the immune-enhancing effects of polysaccharides isolated from Phellinus linteus mycelium on Mori ramulus. Crude polysaccharides were isolated by pressurized extraction ($121^{\circ}C$, $1.2kgf/cm^2$, 3 h), ethanol precipitation, and lyophilization. In addition, crude polysaccharides were further fractionated into unabsorbed fractions (PF-1, fraction No. 3~15) and absorbed fractions (PF-2, fraction No. 24~33) by DEAE-sepharose CL-6B column chromatography in order to isolate immune-regulating polysaccharides. The major constituents in PF-1 and PF-2 were total sugar (75.51% and 52.38%), total protein (1.63% and 8.41%), uronic acid (17.53% and 15.04%), and ${\beta}-glucan$ (28.33% and 25.04%), respectively. PF-1 increased production of nitric oxide (NO) and cytokines, such as tumor necrosis factor-alpha ($TNF-{\alpha}$) and interleukin-6 (IL-6) in a dose-dependent manner. The mRNA expression levels of inducible NO synthetase, cyclooxygenase-2, $TNF-{\alpha}$, and IL-6 markedly increased as determined by polymerase chain reaction analysis. The above data led us to conclude that macrophage activation of purified polysaccharides was higher than that of crude polysaccharides. The polysaccharides isolated from P. linteus mycelium on M. ramulus investigated herein are useful as natural immune-enhancing agents.

본 연구에서는 상지에 배양한 상황버섯 균사체 유래 다당류의 기능성 식품 소재로의 활용 가능성을 확인하기 위해 조다당류의 분리 및 정제를 통해 분획을 얻었으며, 다양한 면역증강 효과를 확인하였다. 건조된 조다당류를 DEAE-sepharose CL-6B를 이용하여 크로마토그래피한 후 340 nm에서의 흡광도, 단백질, 당 및 uronic acid 함량을 분석한 결과, 증류수로 용출되는 비흡착 분획(PF-1, 분획번호 3~15)과 흡착된 후 NaCl 용액에 의해 용출되는 분획(PF-2, 분획번호 24~33)을 얻었다. 분획물 PF-1 및 PF-2의 유용성분 함량으로 총당 함량은 각각 75.51%, 52.38%, 총단백질 함량은 1.63%, 8.41%, uronic acid 함량은 17.53%, 15.04% 및 ${\beta}-glucan$ 함량은 28.33%, 25.04%로 나타났다. PF-1 및 PF-2에 대해 대식세포주에 처리하여 세포생존율을 확인한 결과 $100{\mu}g/mL$ 농도까지 유의적으로 세포사멸이 나타나지 않아 세포독성이 없음을 확인할 수 있었다. Nitric oxide 생성량은 PF-1 $100{\mu}g/mL$에서는 nitric oxide 생성량이 $23.11{\mu}M$로 나타나 양성대조군으로 사용된 LPS 100 ng/mL 처리군($30.30{\mu}M$)의 약 76%의 효과가 있는 것으로 확인되었으며, cytokine 생성량($TNF-{\alpha}$ 및 IL-6) 또한 무처리군에 비하여 높은 생성량을 나타내었다. Polymerase chain reaction을 통한 면역 관련 유전자 발현분석 결과, iNOS, COX-2, $TNF-{\alpha}$, IL-6에서 PF-1 분획에서 높은 발현량을 나타내어 면역 증강을 목적으로 한 기능성 식품 개발에 활용 가능하다고 판단된다.

Keywords

References

  1. Ren G, Liu XY, Zhu HK, Yang SZ, Fu CX. 2006. Evaluation of cytotoxic activities of some medicinal polypore fungi from China. Fitoterapia 77: 408-410. https://doi.org/10.1016/j.fitote.2006.05.004
  2. Chung KS, Kim SS, Kim HS, Han MW, Kim BK. 1994. Antitumor activity of Kp, a protein-polysaccharide from the mycelial culture of Phellinus linteus. Yakhak Hoeji 38: 158-165.
  3. Kim DH, Choi HJ, Bae EA, Han MJ, Park SY. 1998. Effect of artificially cultured Phellinus linteus on harmful intestinal bacterial enzymes and rat intestinal $\alpha$-glucosidases. J Fd Hyg Safety 13: 20-23.
  4. Korea Food and Drug Administration. 2006. National Standard of Traditional Medicinal (Herbal and Botanical) Materials. Seoul, Korea. p 209.
  5. Kim H, You J, Jo Y, Lee Y, Park I, Park J, Jung MA, Kim YS, Kim S. 2013. Inhibitory effects of Phellinus linteus and rice with Phellinus linteus mycelium on obesity and diabetes. J Korean Soc Food Sci Nutr 42: 1029-1035. https://doi.org/10.3746/jkfn.2013.42.7.1029
  6. Kim MC, Kim JS, Heo MS. 2008. Antibacterial, antioxidant and antitumor activities of mushroom mycelium mixed culture extracts. Korean J Biotechnol Bioeng 23: 158-163.
  7. Jung IS, Kim YJ, Choi IS, Choi EY, Shin SH, Gal SW, Choi YJ. 2007. Studies on antioxidant activity and inhibition of nitric oxide synthesis of germinated brown rice soaked in mycelial culture broth of Phellinus linteus. J Life Sci 17: 1141-1146. https://doi.org/10.5352/JLS.2007.17.8.1141
  8. Kim H, Yoon HS, Jeong JH, Jeong HS, Hwang JH, Yu KW. 2010. Enhancement of immunostimulation by fractionation of active polysaccharide from fermented ginseng with Phellinus linteus mycelium in solid culture. Korean J Food Sci Technol 42: 223-232.
  9. Shon MY, Seo KI, Choi SY, Sung NJ, Lee SW, Park SK. 2006. Chemical compounds and biological activity of Phellinus baumii. J Korean Soc Food Sci Nutr 35: 524-529. https://doi.org/10.3746/jkfn.2006.35.5.524
  10. Tamura Y, Niinobe M, Arima T, Okuda H, Fujii S. 1973. Studies on aminopeptidases in rat liver and plasma. Biochim Biophys Acta 327: 437-445. https://doi.org/10.1016/0005-2744(73)90427-0
  11. Olson EJ, Standing JE, Griego-Harper N, Hoffman OA, Limper AH. 1996. Fungal $\beta$-glucan interacts with vitronectin and stimulates tumor nectosis factor alpha release from macrophages. Infect Immu 64: 3548-3554.
  12. Jorgensen JB, Robertsen B. 1995. Yeast $\beta$-glucan stimulates respiratory burst activity of Atlantic salmon (Salmo salar L.) macrophages. Dev Comp Immunol 19: 43-57. https://doi.org/10.1016/0145-305X(94)00045-H
  13. Yu AR, Park HY, Choi IW, Park YK, Hong HD, Choi HD. 2012. Immune enhancing effect of medicinal herb extracts on a RAW264.7 macrophage cell line. J Korean Soc Food Sci Nutr 41: 1521-1527. https://doi.org/10.3746/jkfn.2012.41.11.1521
  14. Seo SJ, Choi HG, Chung HJ, Hong CK. 2002. Time course of expression of mRNA of inducible nitric oxide synthase and generation of nitric oxide by ultraviolet B in keratinocyte cell lines. Br J Dermatol 147: 655-662. https://doi.org/10.1046/j.1365-2133.2002.04849.x
  15. Weller R. 1997. Nitric oxide-a newly discovered chemical transmitter in human skin. Br J Dermatol 137: 665-672. https://doi.org/10.1111/j.1365-2133.1997.tb01099.x
  16. Moncada S, Higgs A. 1993. The L-arginine-nitric oxide pathway. N Engl J Med 329: 2002-2012. https://doi.org/10.1056/NEJM199312303292706
  17. Shew RL, Papka RE, McNeill DL, Yee JA. 1993. NADPH-diaphorase- positive nerves and the role of nitric oxide in CGRP relaxation of uterine contraction. Peptides 14: 637-641. https://doi.org/10.1016/0196-9781(93)90157-C
  18. Kawamata H, Ochiai H, Mantani N, Terasawa K. 2000. Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS activated RAW264.7 cells, a murine macrophage cell line. Am J Chin Med 28: 217-226. https://doi.org/10.1142/S0192415X0000026X
  19. Lee BG, Kim SH, Zee OP, Lee KR, Lee HY, Han JW, Lee HW. 2000. Suppression of inducible nitric oxide synthase expression in RAW264.7 macrophages by two beta-carboline alkaloids extracted from Melia azedarach. Eur J Pharmacol 406: 301-309. https://doi.org/10.1016/S0014-2999(00)00680-4
  20. Kim HS, Kang JS. 2008. Preparation and characteristics of bread by medicinal herb composites with immunostimulating activity. J Korean Soc Food Sci Nutr 37: 109-116. https://doi.org/10.3746/jkfn.2008.37.1.109
  21. Jung EB, Jo JH, Cho SM. 2008. Cytotoxic effect of isolated protein-bound polysaccharides from Hypsizigus marmoreus extracts by response surface methodology. J Korean Soc Food Sci Nutr 37: 1647-1653. https://doi.org/10.3746/jkfn.2008.37.12.1647
  22. Saha AK, Brewer CF. 1994. Determination of the concentrations of oligosaccharides, complex type carbohydrates, and glycoproteins using the phenol-sulfuric acid method. Carbohydr Res 254: 157-167. https://doi.org/10.1016/0008-6215(94)84249-3
  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
  24. Cesaretti M, Luppi E, Maccari F, Volpi N. 2003. A 96-well assay for uronic acid carbazole reaction. Carbohydr Polym 54: 59-61. https://doi.org/10.1016/S0144-8617(03)00144-9
  25. Choi SJ, Lee YS, Kim JK, Kim JK, Lim SS. 2010. Physiological activities of extract from edible mushrooms. J Korean Soc Food Sci Nutr 39: 1087-1096. https://doi.org/10.3746/jkfn.2010.39.8.1087
  26. van Meerloo J, Kaspers GJ, Cloos J. 2011. Cell sensitivity assays: the MTT assay. In Cancer Cell Culture: Methods and Protocols. Humana Press, New York, NY, USA. Vol 731, p 237-245.
  27. Han J, Kim Y, Sung J, Um Y, Lee Y, Lee J. 2009. Suppressive effects of Chrysanthemum zawadskii var. latilobum flower extracts on nitric oxide production and inducible nitric oxide synthase expression. J Korean Soc Food Sci Nutr 38: 1685-1690. https://doi.org/10.3746/jkfn.2009.38.12.1685
  28. Cho CW, Rhee YK, Lee YC, Kim YC, Shin KS, Nam SH, Hong HD. 2014. Immunomodulatory activity of crude polysaccharides from Makgeolli. J Korean Soc Food Sci Nutr 43: 238-242. https://doi.org/10.3746/jkfn.2014.43.2.238
  29. Lee DH, Hong JH. 2015. Immune-enhancing effects of polysaccharides isolated from Ascidian (Halocynthia roretzi) tunic. J Korean Soc Food Sci Nutr 44: 673-680. https://doi.org/10.3746/jkfn.2015.44.5.673
  30. Kumar V, Nagar S, Tripathi YC. 2014. Do assorted approaches aid in estimation of uronic acids? Case studies on Tinospora sinensis polysaccharides. Int J Biol Macromol 70: 360-363. https://doi.org/10.1016/j.ijbiomac.2014.07.010
  31. Nakajima A, Ishida T, Koga M, Takeuchi M, Mazda O, Takeuchi M. 2002. Effect of hot water extract from Agaricus blazei Murill on antibody-producing cells in mice. Int Immunopharmacol 2: 1205-1211. https://doi.org/10.1016/S1567-5769(02)00056-5
  32. Chang HL, Chao GR, Chen CC, Jeng LM. 2001. Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordycps millitaris mycelia. Food Chem 74: 203-207. https://doi.org/10.1016/S0308-8146(01)00127-3
  33. Mizuno M, Morimoto M, Minato K, Tsuchida H. 1998. Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci Biotechnol Biochem 62: 434-437. https://doi.org/10.1271/bbb.62.434
  34. Joung EM, Hwang IG, Lee HY, Jeong JH, Yu KW, Jeong HS. 2009. Changes of saponin and $\beta$-glucan content on the cultured ginseng with mushroom mycelia. J Korean Soc Food Sci Nutr 38: 1084-1089. https://doi.org/10.3746/jkfn.2009.38.8.1084
  35. Han XQ, Chan BCL, Yu H, Yang YH, Hu SQ, Ko CH, Dong CX, Wong CK, Shaw PC, Fung KP, Leung PC, Hsiao WL, Tu PF, Han QB. 2012. Structural characterization and immuno-modulating activities of a polysaccharide from Ganoderma sinense. Int J Biol Macromol 51: 597-603. https://doi.org/10.1016/j.ijbiomac.2012.06.029
  36. Kim GY, Lee JY, Lee JO, Ryu CH, Choi BT, Jeong YK, Lee KW, Jeong SC, Choi YH. 2006. Partial characterization and immunostimulatory effect of a novel polysaccharideprotein complex extracted from Phellinus linteus. Biosci Biotechnol Biochem 70: 1218-1226. https://doi.org/10.1271/bbb.70.1218
  37. McDaniel ML, Kwon G, Hill JR, Marshall CA, Corbett JA. 1996. Cytokines and nitric oxide in islet inflammation and diabetes. Proc Soc Exp Biol Med 211: 24-32. https://doi.org/10.3181/00379727-211-43950D
  38. Kim DH, Park SJ, Jung JY, Kim SC, Byun SH. 2009. Anti-inflammatory effects of the aqueous extract of Hwangnyenhaedok- tang in LPS-activated macrophage cells. Kor J Herbol 24: 39-47.
  39. Lee BE, Ryu SY, Kim EH, Kim YH, Kwak KA, Song HY. 2012. Immunostimulating effect of mycelium extract of Phellinus linteus. Kor J Parmacogn 43: 157-162.
  40. Jeong HJ, Chung HS, An HJ, Seo SW, Kim TG, Won JH, Shin JY, Ahn KS, Kim HM. 2004. The immune-enhancing effect of the herbal combination Bouum-Myunyuk-Dan. Biol Pharm Bull 27: 29-33. https://doi.org/10.1248/bpb.27.29
  41. Ryu HS. 2008. Effects of Job's Tears (Yul-Moo) extracts on mouse splenocyte and macrophage cell activation. Korean J Food Nutr 21: 1-6.
  42. Yoon TJ, Yu KW, Shin KS, Suh HJ. 2008. Innate immune stimulation of exo-polymers prepared from Cordyceps sinensis by submerged culture. Appl Microbiol Biotechnol 80: 1087-1093. https://doi.org/10.1007/s00253-008-1607-y

Cited by

  1. 국내 자생 야생버섯류 추출물의 생리활성 연구 vol.18, pp.2, 2020, https://doi.org/10.14480/jm.2020.18.2.151
  2. 국내 수집 야생버섯류 추출물의 생리활성 비교 vol.19, pp.1, 2021, https://doi.org/10.14480/jm.2021.19.1.41
  3. Dextran Sulfate Sodium으로 유발된 대장염 모델에서 백목이버섯(Tremella fuciformis) 균사체 유래 다당류의 항염증효과 vol.34, pp.2, 2017, https://doi.org/10.9799/ksfan.2021.34.2.146