DOI QR코드

DOI QR Code

Magnetic Refrigeration Apparatus at Room Temperature Using Concentric Halbach Cylinder Permanent Magnets

동심 원통형 Halbach 배열 영구자석을 이용한 상온 자기냉동장치

  • Lee, Changho (Graduate School, Gangnueng-Wonju Nat'l Univ.) ;
  • Lee, Jong Suk (Dept. of Precision Mechanical Engineering, Gangnueng-Wonju Nat'l Univ.)
  • 이창호 (강릉원주대학교 대학원) ;
  • 이종석 (강릉원주대학교 정밀기계공학전공)
  • Received : 2016.07.12
  • Accepted : 2016.11.27
  • Published : 2017.01.01

Abstract

Recently international cooperations are formed to deal with the environmental pollution of the atmosphere generated by the vapor compression refrigeration system. A refrigeration technique, which can replace existing CFC refrigerants that are the main cause of environmental contamination, has received greater attention. Magnetic refrigeration is a refrigeration technique using the magnetocaloric effect of the magnetic material, and is an eco-friendly refrigeration technology using the solid refrigerant instead of CFC refrigerants. Also it is regarded as an efficient refrigeration system to generate temperature difference between high and low sides using the temperature change of magnetic refrigerants according to the change of magnetic field, instead of using power-consuming and noisy compressor. In this paper, we introduce the magnetic refrigeration apparatus using concentric Halbach cylinder permanent magnets and the experimental results using the apparatus.

근래에 들어서 증기 압축식 냉동시스템으로 인한 대기환경 오염문제를 해결하기 위해 국제적 공조의 분위기가 형성되고 있다. 그래서 그 환경오염의 주원인으로 지적되는 CFC 냉매를 대체하는 냉동기술이 큰 주목을 받고 있다. 자기냉동은 물질의 자기열량효과를 이용하여 저온을 생성시키는 방법으로, CFC 냉매를 사용하는 대신에 고체 냉매를 사용함으로써 친환경적인 냉동 기술이라고 할 수 있다. 또한 전력 소모와 소음이 큰 압축기를 사용하지 않고, 자기장의 변화에 따른 재료의 온도 변화를 이용하여 저온부와 고온부의 온도차를 발생시킬 수 있어서 효율적인 냉동시스템으로 간주된다. 본 논문에서는 동심 원통형 Halbach 배열의 영구자석을 이용한 자기냉동장치를 제작하고, 이 장치를 이용하여 실험한 결과를 소개하고자 한다.

Keywords

References

  1. Navigant Consulting, Inc., 2009, "Energy Savings Potential and R&D Opportunities for Commercial Refrigeration," Report Prepared for the Building Technologies Program, US DOE. September 2009.
  2. Park, I., Kim, Y. and Jeong, S., 2012, "Development of the Active Magnetic Regenerative Refrigerator for Room Temperature Application," Superconductivity and cryogenics, Vol. 14, No. 3, pp. 60-64. https://doi.org/10.9714/sac.2012.14.3.060
  3. Lee, J. S., 2015, "Experimental Results for Active Magnetic Regenerative Refrigeration Apparatus using Twin Beds," Journal of Mechanical Science and Technology, Vol. 29, No. 5, pp. 2237-2241. https://doi.org/10.1007/s12206-015-0444-z
  4. Lee, J. S. and Hong, J. H., 2004, "Experimental Study on a Rotary Magnetic Refrigeration Device," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 16, No. 12, pp. 1101-1106.
  5. Okamura, T., Yamada, K., Hirano, N. and Nagaya, S., 2006. "Performance of a Room-temperature Rotary Magnetic Refrigerator," International Journal of Refrigeration, Vol. 29, pp. 1327-1331. https://doi.org/10.1016/j.ijrefrig.2006.07.020
  6. Tura, A. and Rowe, A., 2011, "Permanent Magnet Magnetic Refrigerator Design and Experimental Characterization," International Journal of Refrigeration, Vol. 34, pp. 628-639. https://doi.org/10.1016/j.ijrefrig.2010.12.009
  7. Arnold, D. S., Tura, A., Ruebsaat-Trott, A. and Rowe, A., 2014, "Design Improvement of a Permanent Magnet Active Magnetic Refrigerator," International Journal of Refrigeration, Vol. 37, pp. 99-105. https://doi.org/10.1016/j.ijrefrig.2013.09.024
  8. Baek, U. B., Lee, J. S., Yu, S.-C. and Ryu, K.-S., 2014, "Magnetic Shielding Effect on Halbach Cylinder used in Magnetic Refrigerators," Journal of Magnetics, Vol. 19, No. 4, pp. 349-352. https://doi.org/10.4283/JMAG.2014.19.4.349
  9. Jeong, S. and Kim, Y. K., 2011, "Magnetic Refrigeration," Journal of the KSME, Vol. 49, No. 9, pp. 20-25.