DOI QR코드

DOI QR Code

HeLa Cell Culture on Nanoimprinted Patterns Using Conducting Polymer

전도성 고분자 나노임프린트 패턴 상의 HeLa 세포 배양

  • Ahn, Junhyoung (Nano-Convergence Mechanical System Research Division, Korea Institute of Machinery and Materials) ;
  • Park, Kyungsook (BioNano Health Guard Research Center) ;
  • Lee, Suok (Nano-Convergence Mechanical System Research Division, Korea Institute of Machinery and Materials) ;
  • Jung, Sanghee (Nano-Convergence Mechanical System Research Division, Korea Institute of Machinery and Materials) ;
  • Lim, Hyungjun (Nano-Convergence Mechanical System Research Division, Korea Institute of Machinery and Materials) ;
  • Shin, Yong-Beom (BioNano Health Guard Research Center) ;
  • Lee, JaeJong (Nano-Convergence Mechanical System Research Division, Korea Institute of Machinery and Materials)
  • 안준형 (한국기계연구원 나노융합기계연구본부) ;
  • 박경숙 (바이오헬스가드연구단) ;
  • 이수옥 (한국기계연구원 나노융합기계연구본부) ;
  • 정상희 (한국기계연구원 나노융합기계연구본부) ;
  • 임형준 (한국기계연구원 나노융합기계연구본부) ;
  • 신용범 (바이오헬스가드연구단) ;
  • 이재종 (한국기계연구원 나노융합기계연구본부)
  • Received : 2016.07.27
  • Accepted : 2016.10.04
  • Published : 2017.01.01

Abstract

In bioscience and biotechnology, the research of fundamental life mechanisms and their diseases caused by insufficiency is important. The study of a whole organism is difficult and sometimes impossible because of DNA, RNA, proteins, cellular organelles, various cells, and organs. Cell cultures can provide a simple method for researching cellular mechanisms and conditions, both in terms of physiological performance, and in response to chemical stimulation. According to conventional cell culture methodology, the flat surface is used with surface treatments for cell adhesion on the surface. Micro- and nanoscale patterns have been developed with chemical and biochemical modifications for cell immobilization. In this study, HeLa cell culture on nanostructures patterns was studied, including the 300 nm line and 150 nm pillar structures, using nanoimprint lithography and pyrrole as a biocompatible conducting polymer.

일반적인 세포 배양 기술은 평평한 표면에 세포 부착을 위한 화학적, 생화학적 표면처리를 하는 것이 기본이지만, 요즘 들어 마이크로나 나노 크기의 구조체를 형성하여 세포 부착을 하는 연구들이 많이 진행되고 있다. 본 연구에서는 전도성 고분자인 피롤과 나노임프린트 기술을 이용하여 300 nm 선 패턴과 150 nm 원기둥 패턴의 나노구조체 제작 후 대표적인 암세포인 HeLa 세포를 배양하여, 주사전자현미경과 공초점 현미경을 이용하여 세포의 부착 특성을 연구하였다. 상용 페트리 접시와 평면 피롤에서는 세포들이 부정형의 형태로 부착 및 배양되었지만, 선폭 300 nm 선패턴 상에서는 길이 방향으로 세포가 부착되고 세포 내의 핵과 액틴 역시 배열되어 있고, 지름 150 nm 원기둥 패턴 상에서는 단일 세포로 고정되고 세포 내 액틴은 방사상으로 나노구조체에 고정되어 있는 것을 확인할 수 있었다.

Keywords

References

  1. Primiceri, E., Chirico, M.S., Rinaldi, R. and Maruccio, G., 2013, "Cell Chips as New Tools for Cell Biology-results, Perspectives and Opportunities," Lab on a Chip, Vol. 13, pp. 3789-3802. https://doi.org/10.1039/c3lc50550b
  2. Ni, M., Tong, W.H., Choudhury, D., Rahim, N.A.A., Iliescu, C. and Yu, Hanry, 2009, "Cell Culture on MEMS Platforms: A Review," International Journal of Molecular Sciences, Vol. 10, pp. 5411-5441. https://doi.org/10.3390/ijms10125411
  3. Chou, S.Y., Kraus, P.R. and Renstrom P.J., 1996, "Imprint Lithography with 25-nanometer Resolution," Science, Vol. 272, Issue 5258, pp. 85-87. https://doi.org/10.1126/science.272.5258.85
  4. Garcia,D.E., Chen, T.-H., Wei, F. and Ho, C.-M., 2010, "A Parametric Design Study of an Electrochemical Sensor," Journal of Laboratory Automation, Vol. 15, Issue 3, pp. 179-188. https://doi.org/10.1016/j.jala.2010.01.007
  5. Gursoy, O., Celik, G. and Gursoy, S.S., 2014, "Electrochemical Biosensor Based on Surfactant Doped Polypyrrole (PPy) Matrix for Lactose Determination," Journal of Applied Polymer Science, Vol. 131, Issue 9, p. 40200.
  6. Balint, R., Cassidy, N.J. and Cartmell, S.H., 2014, "Conductive Polymers: Towards a Smart Biomaterial for Tissue Engineering," Acta Biomaterialia, Vol. 10, pp. 2341-2353. https://doi.org/10.1016/j.actbio.2014.02.015
  7. Strandwltz, N.C., Nonoguchi, Y., Boettcher, S.W. and Stucky, G.D., 2010, "In Situ Photopolymerization of Pyrrole in Mesoporous TiO2," Langmuir, Vol. 26, pp. 5319-5322. https://doi.org/10.1021/la100913e
  8. Ferrari, A., Cecchini, M., Dhawan, A., Micera, S., Tonazzini, I., Stabile, R., Pisignano, D. and Beltram, F., 2011, "Nanotopographic Control of Neuronal Polarity," Nano Letters, Vol. 11, pp. 505-511. https://doi.org/10.1021/nl103349s
  9. Yang, S.Y., Lee, B., Tsui, J.H., Macadangdang, J., Jang, S.-Y., Im, S.G. and Kim, D.-H., 2016, "Electroconductive Nanopatterned Substrates for Enhanced Myogenic Differentiation and Maturation," Advanced Healthcare Materials, Vol. 5, pp. 137-145. https://doi.org/10.1002/adhm.201500003