DOI QR코드

DOI QR Code

Modelling of the interfacial damping due to nanotube agglomerations in nanocomposites

  • Jarali, Chetan S. (Structural Technologies Division, CSIR National Aerospace Laboratories) ;
  • Madhusudan, M. (Research Centre, Visvesvaraya Technological University) ;
  • Vidyashankar, S. (Department of Mechanical Engineering, Bangalore Institute of Technology) ;
  • Lu, Y. Charles (Department of Mechanical Engineering, University of Kentucky)
  • Received : 2016.05.26
  • Accepted : 2016.11.16
  • Published : 2017.01.25

Abstract

Nanocomposites reinforced with carbon nanotube fibers exhibit greater stiffness, strength and damping properties in comparison to conventional composites reinforced with carbon/glass fibers. Consequently, most of the nanocomposite research is focused in understanding the dynamic characteristics, which are highly useful in applications such as vibration control and energy harvesting. It has been observed that those nanocomposites show better stiffness when the geometry of nanotubes is straight as compared to curvilinear although nanotube agglomeration may exist. In this work the damping behavior of the nanocomposite is characterized in terms of loss factor under the presence of nanotube agglomerations. A micro stick-slip damping model is used to compute the damping properties of the nanocomposites with multiwall carbon nanotubes. The present formulation considers the slippage between the interface of the matrix and the nanotubes as well as the slippage between the interlayers in the nanotubes. The nanotube agglomerations model is also presented. Results are computed based on the loss factor expressed in terms of strain amplitude and nanotube agglomerations. The results show that although-among the various factors such as the material properties (moduli of nanotubes and polymer matrix) and the geometric properties (number of nanotubes, volume fraction of nanotubes, and critical interfacial shear stresses), the agglomeration of nanotubes significantly influences the damping properties of the nanocomposites. Therefore the full potential of nanocomposites to be used for damping applications needs to be analyzed under the influence of nanotube agglomerations.

Keywords

References

  1. Ajayan, P.M., Suhr, J. and Koratkar, N. (2006), "Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping", J. Mater. Sci., 41(23), 7824-7829. https://doi.org/10.1007/s10853-006-0693-4
  2. Arash, M., Jafar, J., Alireza, K., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Design, 31(9), 4202-4208. https://doi.org/10.1016/j.matdes.2010.04.018
  3. ASTM E756-05 (2010), Standard Test Methods for Measuring Vibration Damping Properties of Materials, Building Standards.
  4. Buldum, A. and Lu, J.P. (1999), "Atomic scale sliding and rolling of carbon nanotubes", Phys. Rev. Lett., 83, 5050-5053. https://doi.org/10.1103/PhysRevLett.83.5050
  5. Brackbill, C.R., Lesieutre, G.A., Smith, E.C. and Ruhl, L.E. (2000). "Characterization and modeling of the low strain amplitude and frequency dependent behavior of elastomeric damper materials", J. Am. Helicopter Soc., 45(1), 34-42. https://doi.org/10.4050/JAHS.45.34
  6. Deng, C.F., Wang, D.Z., Zhang, X.X. and Ma, Y.X. (2007), "Damping characteristics of carbon nanotube reinforced aluminum composite", Mater. Lett., 61(14-15), 3229-3231. https://doi.org/10.1016/j.matlet.2006.11.073
  7. Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Design, 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
  8. Fereidoon, A., Kordani, N., Ahangari, M.G. and Ashoory, M. (2010), "Damping augmentation of epoxy using carbon nanotubes", Int. J. Polym. Mater., 60(1), 11-26. https://doi.org/10.1080/00914037.2010.504152
  9. Gou, J., Minaie, B., Wang, B., Liang, Z. and Zhang, C. (2004), "Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites", Comp. Mater. Sci., 31(3-4), 225-236. https://doi.org/10.1016/j.commatsci.2004.03.002
  10. Geng, Y., Liu, M.Y., Li, J., Shi, X.M. and Kim, J.K. (2008), "Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites", Compos. Part A-Appl. S., 39(12), 1876-1883. https://doi.org/10.1016/j.compositesa.2008.09.009
  11. Jarali, C.S., Patil, S.F. and Pilli, S.C. (2013), "Hygro-thermoelectric properties of CNT nanocomposites with agglomeration effects. mechanics of advanced materials and structures", (DOI 10.1080/15376494.2013.769654).
  12. Jarali, C.S., Basavaraddi, S.R., Bjorn, K., Pilli, S.C. and Lu, Y.C. (2014), "Modelling of the effective elastic properties of multifunctional CNT nanocomposites due to agglomeration of straight circular CNT fibers in a polymer matrix", J. Appl. Mech. -T ASME, 81, 021010-1-021010-11. (Doi: 10.1115/1.4024414).
  13. Jarali, C.S., Patil, S.F., Pilli, S.C., Raja, S. and Karjinni, V.V. (2015), "Modelling the hygro-thermo-mechanical agglomeration relations of carbon-epoxy hybrid nNanocomposites", J. Multiscale Comput. Eng., 13(3), 231-248. https://doi.org/10.1615/IntJMultCompEng.2015012650
  14. Koratkar, N., Wei, B.Q. and Ajayan, P.M. (2002), "Carbon nanotube films for damping applications", Adv. Mater., 14(13-14), 997-1000. https://doi.org/10.1002/1521-4095(20020705)14:13/14<997::AID-ADMA997>3.0.CO;2-Y
  15. Koratkar, N.A., Suhr, J., Joshi, A. et al. (2005), "Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites", Appl. Phys. Lett., 87(6), 063102. https://doi.org/10.1063/1.2007867
  16. Kireitseu, M., Hui, D. and Tomlinson, G. (2008), "Advanced shock-resistant and vibration damping of nanoparticlereinforced composite material", Compos. Part B-Eng., 39(1), 128-138. https://doi.org/10.1016/j.compositesb.2007.03.004
  17. Khan, S.U., Li, C.Y., Siddiqui, N.A. and Kim, J.K. (2011), "Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes", Compos. Sci. Technol., 71(12), 1486-1494. https://doi.org/10.1016/j.compscitech.2011.03.022
  18. Lindler, J.E. and Wereley, N.M. (1999), "Double adjustable shock absorbers using electro-rheological fluid", J. Intel. Mat. Syst. Str., 10(8), 652-657. https://doi.org/10.1106/468R-DHQM-076W-MAF6
  19. Li, C. and Chou, T.W. (2003), "Elastic moduli of multi-walled carbon nanotubes and the effect of van der waals forces", Compos. Sci. Technol., 63(11), 1517-1524. https://doi.org/10.1016/S0266-3538(03)00072-1
  20. Liu, A., Huang, J.H., Wang, K.W. and Bakis, C.E. (2006), "Effects of interfacial friction on the damping characteristics of composites containing randomly oriented carbon nanotube ropes", J. Intel. Mat. Syst. Str., 17(3), 217-229. https://doi.org/10.1177/1045389X06056063
  21. Liu, A., Wang, K.W. and Bakis, C.E. (2010), "Multiscale damping model for polymeric composites containing carbon nanotube ropes", J. Compos. Mater., 44, 2301-2323. https://doi.org/10.1177/0021998310365176
  22. Lin, R.M. and Lu, C. (2010), "Modeling of interfacial friction damping of carbon nanotube-based nanocomposites", Mech. Syst. Signal Pr., 24(8), 2996-3012. https://doi.org/10.1016/j.ymssp.2010.06.003
  23. Paradise, M. and Goswami, T. (2007), "Carbon nanotubes-production and industrial applications", Mater. Design, 28(5), 1477-1489. https://doi.org/10.1016/j.matdes.2006.03.008
  24. Rajoria, H. and Jalili, N. (2005), "Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites", Compos. Sci. Technol., 65(14), 2079-2093. https://doi.org/10.1016/j.compscitech.2005.05.015
  25. Sun, C.T. and Lu, Y.P. (1995), Vibration damping of structural elements, Prentice Hall.
  26. Salvetat-Delmotte, J.P. and Rubio, A. (2002), "Mechanical properties of carbon nanotubes: A fiber digest for beginners", Carbon, 40(10), 1729-1734. https://doi.org/10.1016/S0008-6223(02)00012-X
  27. Suhr, J. and Koratkar, N. (2008), "Energy dissipation in carbon nanotube composites: A review", J. Mater. Sci., 43(13), 4370-4382. https://doi.org/10.1007/s10853-007-2440-x
  28. Wetzel, B., Rosso, P., Haupert, F. and Friedrich, K. (2006), "Epoxy nanocomposites-fracture and toughening mechanisms", Eng. Fract. Mech., 73(16), 2375-2398. https://doi.org/10.1016/j.engfracmech.2006.05.018
  29. Xu, X., Thwe, M.M., Shearwood, C. and Liao, K. (2002), "Mechanical properties and interfacial characteristics of carbonnanotube-reinforced epoxy thin films", Appl. Phys. Lett., 81, 2833. https://doi.org/10.1063/1.1511532
  30. Yu, M.F., Yakobson, B.I. and Ruoff, R.S. (2000), "Controlled sliding and pullout of nested shells in individual multi walled carbon nanotubes", J. Phys. Chem. B., 104(37), 8764-8767. https://doi.org/10.1021/jp002828d
  31. Zhou, X., Shin, E., Wang, K.W. and Bakis, C.E. (2004), "Interfacial damping characteristics of carbon nanotube-based composites", Compos. Sci. Technol., 64(15), 2425-2437. https://doi.org/10.1016/j.compscitech.2004.06.001

Cited by

  1. Viscoelastic modeling and vibration damping characteristics of hybrid CNTs-CFRP composite shell structures 2017, https://doi.org/10.1007/s00707-017-2051-9
  2. Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubes-reinforced sandwich microplates considering structural damping vol.20, pp.5, 2017, https://doi.org/10.12989/sss.2017.20.5.583
  3. Vibration response of smart concrete plate based on numerical methods vol.23, pp.4, 2019, https://doi.org/10.12989/sss.2019.23.4.387
  4. Experimental investigation of self-healing concrete after crack using nano-capsules including polymeric shell and nanoparticles core vol.25, pp.3, 2017, https://doi.org/10.12989/sss.2020.25.3.337