DOI QR코드

DOI QR Code

On the modeling methods of small-scale piezoelectric wind energy harvesting

  • Zhao, Liya (School of Civil and Environmental Engineering, Nanyang Technological University) ;
  • Yang, Yaowen (School of Civil and Environmental Engineering, Nanyang Technological University)
  • Received : 2016.02.25
  • Accepted : 2016.05.12
  • Published : 2017.01.25

Abstract

The interdisciplinary research area of small scale energy harvesting has attracted tremendous interests in the past decades, with a goal of ultimately realizing self-powered electronic systems. Among the various available ambient energy sources which can be converted into electricity, wind energy is a most promising and ubiquitous source in both outdoor and indoor environments. Significant research outcomes have been produced on small scale wind energy harvesting in the literature, mostly based on piezoelectric conversion. Especially, modeling methods of wind energy harvesting techniques plays a greatly important role in accurate performance evaluations as well as efficient parameter optimizations. The purpose of this paper is to present a guideline on the modeling methods of small-scale wind energy harvesters. The mechanisms and characteristics of different types of aeroelastic instabilities are presented first, including the vortex-induced vibration, galloping, flutter, wake galloping and turbulence-induced vibration. Next, the modeling methods are reviewed in detail, which are classified into three categories: the mathematical modeling method, the equivalent circuit modeling method, and the computational fluid dynamics (CFD) method. This paper aims to provide useful guidance to researchers from various disciplines when they want to develop and model a multi-way coupled wind piezoelectric energy harvester.

Keywords

References

  1. Abdelkefi, A. (2012), "Global nonlinear analysis of piezoelectric energy harvesting from ambient and aeroelastic vibrations", Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
  2. Abdelkefi, A. (2016), "Aeroelastic energy harvesting: A review", IJES, 100, 112-135.
  3. Abdelkefi, A. and Hajj, M.R. (2013), "Performance enhancement of wing-based piezoaeroelastic energy harvesting through freeplay nonlinearity", Theor. Appl. Mech. Lett., 3(4), 041001. https://doi.org/10.1063/2.1304101
  4. Abdelkefi, A., Hajj M.R. and Nayfeh A.H. (2012a), "Sensitivity analysis of piezoaeroelastic energy harvesters", J. Intel. Mat. Syst. Str., 23(13), 1523-1531. https://doi.org/10.1177/1045389X12440752
  5. Abdelkefi, A., Hajj M.R. and Nayfeh A.H. (2012b), "Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders", Nonlinear Dynam., 70(2), 1377-1388. https://doi.org/10.1007/s11071-012-0540-x
  6. Abdelkefi, A., Hajj, M.R. and Nayfeh, A.H. (2012c), "Power harvesting from transverse galloping of square cylinder", Nonlinear Dynam., 70(2), 1355-1363. https://doi.org/10.1007/s11071-012-0538-4
  7. Abdelkefi, A., Hajj, M.R. and Nayfeh, A.H. (2013d), "Piezoelectric energy harvesting from transverse galloping of bluff bodies", Smart Mater. Struct., 22(1), 015014. https://doi.org/10.1088/0964-1726/22/1/015014
  8. Abdelkefi, A., Nayfeh, A. and Hajj, M. (2012a), "Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation", Nonlinear Dynam., 67(2), 1221-1232. https://doi.org/10.1007/s11071-011-0064-9
  9. Abdelkefi, A., Nayfeh, A.H. and Hajj, M.R. (2012b), "Modeling and analysis of piezoaeroelastic energy harvesters", Nonlinear Dynam., 67(2), 925-939. https://doi.org/10.1007/s11071-011-0035-1
  10. Abdelkefi, A., Nayfeh, A.H. and Hajj, M.R. (2012c), "Design of piezoaeroelastic energy harvesters", Nonlinear Dynam., 68(4), 519-530. https://doi.org/10.1007/s11071-011-0233-x
  11. Abdelkefi, A., Nayfeh, A.H. and Hajj M.R. (2012d), "Enhancement of power harvesting from piezoaeroelastic systems", Nonlinear Dynam., 68(4), 531-541. https://doi.org/10.1007/s11071-011-0234-9
  12. Abdelkefi, A., Scanlon, J.M., Mcdowell, E. and Hajj, M.R. (2013), "Performance enhancement of piezoelectric energy harvesters from wake galloping", Appl. Phys. Lett., 103(3), 033903. https://doi.org/10.1063/1.4816075
  13. Abdelkefi, A., Vasconcellos, R., Marques, F.D. and Hajj, M.R. (2012d), "Bifurcation analysis of an aeroelastic system with concentrated nonlinearities", Nonlinear Dynam., 69(1-2), 57-70. https://doi.org/10.1007/s11071-011-0245-6
  14. Abdelkefi, A., Yan, Z. and Hajj, M.R. (2013b), "Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping", Smart Mater. Struct., 22(2), 025016. https://doi.org/10.1088/0964-1726/22/2/025016
  15. Akaydin, H.D. (2012), "Piezoelectric energy harvesting from fluid flow", Ph.D. Dissertation, City University of New York.
  16. Akaydin, H.D., Elvin, N. and Andreopoulos, Y. (2010a), "Energy harvesting from highly unsteady fluid flows using piezoelectric materials", J. Intel. Mat. Syst. Str., 21(13), 1263-1278. https://doi.org/10.1177/1045389X10366317
  17. Akaydin, H.D., Elvin, N. and Andreopoulos, Y. (2010b), "Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials", Exp. Fluids, 49(1), 291-304. https://doi.org/10.1007/s00348-010-0871-7
  18. Akaydin, H.D., Elvin, N. and Andreopoulos, Y. (2012), "The performance of a self-excited fluidic energy harvester", Smart Mater. Struct., 21(2), 025007. https://doi.org/10.1088/0964-1726/21/2/025007
  19. ANSYS CFX. Retrieved December 10, 2014, from http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+CFX
  20. ANSYS Fluent. Retrieved December 10, 2014, from http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent
  21. Anton, S.R. and Sodano, H.A. (2007), "A review of power harvesting using piezoelectric materials (2003-2006)", Smart Mater. Struct., 16(3), 1-21. https://doi.org/10.1088/0964-1726/16/1/001
  22. Au-Yang, M.K. (2001), Flow-induced vibration of power and process plant components : a practical workbook (1st ed.), ASME Press, New York, NY.
  23. Balakrishnan, A.V. (2012), Aeroelasticity-Continuum Theory, Springer-Verlag New York, New York, NY.
  24. Balasubramanian, S., Skop, R., Haan, F. and Szewczyk, A. (2000), "Vortex-excited vibrations of uniform pivoted cylinders in uniform and shear flow", JFS, 14(1), 65-85.
  25. Bansal, A., Howey, D. and Holmes, A. (2009), "CM-scale air turbine and generator for energy harvesting from low-speed flows", Proceedings of the Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International.
  26. Barrero-Gil, A., Alonso, G. and Sanz-Andres, A. (2010), "Energy harvesting from transverse galloping", J. Sound Vib., 329(14), 2873-2883. https://doi.org/10.1016/j.jsv.2010.01.028
  27. Barrero-Gil, A., Pindado, S. and Avila, S. (2012), "Extracting energy from Vortex-Induced Vibrations: A parametric study", Appl. Math. Modell., 36(7), 3153-3160. https://doi.org/10.1016/j.apm.2011.09.085
  28. Beeby, S.P., Tudor, M.J. and White, N.M. (2006), "Energy harvesting vibration sources for microsystems applications", Meas. Sci. Technol., 17(12), 175-195. https://doi.org/10.1088/0957-0233/17/12/R01
  29. Bibo, A. (2014), "Investigation of concurrent energy harvesting from ambient vibrations and wind", Ph.D. Dissertation, Clemson University.
  30. Bibo, A. and Daqaq, M.F. (2013a), "Energy harvesting under combined aerodynamic and base excitations", J. Sound Vib., 332(20), 5086-5102. https://doi.org/10.1016/j.jsv.2013.04.009
  31. Bibo, A. and Daqaq, M.F. (2013b), "Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator", Appl. Phys. Lett., 102(24), 243904. https://doi.org/10.1063/1.4811408
  32. Bibo, A. and Daqaq, M.F. (2014), "On the optimal performance and universal design curves of galloping energy harvesters", Appl. Phys. Lett., 104(2), 023901. https://doi.org/10.1063/1.4861599
  33. Bibo, A., Abdelkefi, A. and Daqaq, M.F. (2015), "Modeling and characterization of a piezoelectric energy harvester under combined aerodynamic and base excitations", J. Vib. Acoust., 137(3), 031017. https://doi.org/10.1115/1.4029611
  34. Bibo, A., Alhadidi, A.H. and Daqaq. M.F. (2015), "Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters", J. Appl. Phys., 117(4), 045103. https://doi.org/10.1063/1.4906463
  35. Bressers, S., Avirovik, D., Lallart, M., Inman, D.J. and Priya, S. (2011), Contact-less Wind Turbine Utilizing Piezoelectric Bimorphs with Magnetic Actuation, Springer, New York.
  36. Bressers, S., Vernier, C., Regan, J., Chappell, S., Hotze, M., Luhman, S., Avirovik, D. and Priya, S. (2010), "Small-scale modular wind turbine", Proceedings of SPIE, 764333.
  37. Bryant, M. (2012), "Aeroelastic flutter vibration energy harvesting: modeling, testing, and system eesign", Ph.D. Dissertation, Cornell University.
  38. Bryant, M. and Garcia, E. (2009), "Energy harvesting: a key to wireless sensor nodes", Proceedings of the 2nd International Conference on Smart Materials and Nanotechnology in Engineering, 74931W.
  39. Bryant, M. and Garcia, E. (2011), "Modeling and testing of a novel aeroelastic flutter energy harvester", J. Vib. Acoust., 133(1), 011010. https://doi.org/10.1115/1.4002788
  40. Bryant, M., Pizzonia, M., Mehallow, M. and Garcia, E. (2014), "Energy harvesting for self-powered aerostructure actuation", Proceedings of SPIE, 90570E.
  41. Bryant, M., Schlichting, A.D. and Garcia, E. (2013), "Toward efficient aeroelastic energy harvesting: device performance comparisons and improvements through synchronized switching", Proceedings of SPIE, 868807.
  42. Bryant, M., Shafer, M.W. and Garcia, E. (2012), "Power and efficiency analysis of a flapping wing wind energy harvester", Proceedings of SPIE, 83410E
  43. Bryant, M., Tse, R. and Garcia, E. (2012), "Investigation of host structure compliance in aeroelastic energy harvesting", Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems.
  44. Bryant, M., Wolff, E. and Garcia, E. (2011), "Parametric design study of an aeroelastic flutter energy harvester", Proceedings of SPIE, 79770S.
  45. Castagnetti, D. (2012), "Experimental modal analysis of fractalinspired multi-frequency structures for piezoelectric energy converters", Smart Mater. Struct., 21(9), 094009. https://doi.org/10.1088/0964-1726/21/9/094009
  46. Chen, C.T., Islam, R.A. and Priya, S. (2006), "Electric energy generator", IEEE T. Ultrason. Ferr., 53(3), 656-661. https://doi.org/10.1109/TUFFC.2006.1610576
  47. Chen, W.C. (1993), "A formulation of nonlinear limit cycle oscillation problems in aircraft flutter", Master Dissertation, Massachusetts Institute of Technology. Computational fluid dynamics, Wikipedia. Retrieved December 10, 2014, from http://en.wikipedia.org/wiki/Computational_fluid_dynamics
  48. COMSOL CFD Module. Retrieved December 10, 2014, from http://www.comsol.com/cfd-module
  49. Cook-Chennault, K., Thambi, N. and Sastry, A. (2008), "Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems", Smart Mater. Struct., 17(4), 043001. https://doi.org/10.1088/0964-1726/17/4/043001
  50. Dai, H., Abdelkefi, A., Javed, U. and Wang, L. (2015), "Modeling and performance of electromagnetic energy harvesting from galloping oscillations", Smart Mater. Struct., 24(4), 045012. https://doi.org/10.1088/0964-1726/24/4/045012
  51. Dai, H.L., Abdelkefi, A. and Wang, L. (2014a), "Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations", J. Intel. Mat. Syst. Str., 25(14), 1861-1874. https://doi.org/10.1177/1045389X14538329
  52. Dai, H.L., Abdelkefi, A. and Wang, L. (2014b), "Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations", Nonlinear Dynam., 77(3), 967-981. https://doi.org/10.1007/s11071-014-1355-8
  53. Daqaq, M.F., Masana, R., Erturk, A. and Quinn, D.D. (2014), "On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion", ApMRv, 66(4), 040801.
  54. Dat, R. and Tran, C. (1981), "Investigation of the stall flutter of an airfoil with a semi-empirical model of 2 D flow", ONERA, TP no. 1981-146, 1981. 11 p.
  55. De Marqui, C. and Erturk A. (2012), "Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction", J. Intel. Mat. Syst. Str., 24(7), 846-854. https://doi.org/10.1177/1045389X12461073
  56. De Marqui, C., Erturk, A. and Inman, D.J. (2010), "Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes", J. Intel. Mat. Syst. Str., 21(10), 983-993. https://doi.org/10.1177/1045389X10372261
  57. Den Hartog, J.P. (1956), Mechanical Vibrations, New York: McGraw-Hill.
  58. Dowell, E. (2015), A Modern Course in Aeroelasticity, Springer International Publishing.
  59. Dowell, E., Edwards, J. and Strganac, T. (2003), "Nonlinear aeroelasticity", JAir, 40(5), 857-874.
  60. Dugundji, J. (1992), "Nonlinear problems of aeroelasticity", Comput. Nonlinear Mech, Aerospace Eng., 1, 127-155.
  61. Dunn, P. and Dugundji, J. (1992), "Nonlinear stall flutter and divergence analysis of cantilevered graphite/epoxy wings", AIAA J., 30(1), 153-162. https://doi.org/10.2514/3.10895
  62. Dutoit, N.E., Wardle, B.L. and Kim, S.G. (2005), "Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters", InFer, 71(1), 121-160.
  63. El-Hami, M., Glynne-Jones, P., White, N., Hill, M., Beeby, S., James, E., Brown, A. and Ross, J. (2001), "Design and fabrication of a new vibration-based electromechanical power generator", Sensor. Actuat. A.-Phys., 92(1), 335-342. https://doi.org/10.1016/S0924-4247(01)00569-6
  64. Elvin, N.G. (2014), "Equivalent electrical circuits for advanced energy harvesting", J. Intel. Mat. Syst. Str., 25(14), 1715-1726. https://doi.org/10.1177/1045389X14521878
  65. Elvin, N.G. and Elvin, A.A. (2009a), "A general equivalent circuit model for piezoelectric generators", J. Intel. Mat. Syst. Str., 20(1), 3-9. https://doi.org/10.1177/1045389X08089957
  66. Elvin, N.G. and Elvin, A.A. (2009b), "A coupled finite element-circuit simulation model for analyzing piezoelectric energy generators", J. Intel. Mat. Syst. Str., 20(5), 587-595. https://doi.org/10.1177/1045389X08101565
  67. Elvin, N.G. and Elvin, A.A. (2011), "An experimentally validated electromagnetic energy harvester", J. Sound Vib., 330(10), 2314-2324. https://doi.org/10.1016/j.jsv.2010.11.024
  68. Erturk, A. (2009), "Electromechanical modeling of piezoelectric energy harvesters", Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
  69. Erturk, A. and Inman, D.J. (2008a), "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters", J. Vib. Acoust., 130(4), 041002. https://doi.org/10.1115/1.2890402
  70. Erturk, A. and Inman, D.J. (2008b), "On mechanical modeling of cantilevered piezoelectric vibration energy harvesters", J. Intel. Mat. Syst. Str., 19(11), 1311-1325. https://doi.org/10.1177/1045389X07085639
  71. Erturk, A., Vieira, W., De Marqui, Jr C. and Inman, D. (2010), "On the energy harvesting potential of piezoaeroelastic systems", Appl. Phys. Lett., 96(18), 184103. https://doi.org/10.1063/1.3427405
  72. Ewere, F., Wang, G. and Cain, B. (2014), "Experimental investigation of galloping piezoelectric energy harvesters with square bluff bodies", Smart Mater. Struct., 23(10), 104012. https://doi.org/10.1088/0964-1726/23/10/104012
  73. Facchinetti, M.L., De Langre, E. and Biolley, F. (2002), "Vortex shedding modeling using diffusive van der Pol oscillators", Comptes Rendus Mecanique, 330(7), 451-456. https://doi.org/10.1016/S1631-0721(02)01492-4
  74. Facchinetti, M.L., De Langre, E. and Biolley, F. (2004), "Coupling of structure and wake oscillators in vortex-induced vibrations", JFS, 19(2), 123-140.
  75. Federspiel, C.C. and Chen, J. (2003), "Air-powered sensor", Proceedings of Sensors, 2003. Proceedings of IEEE, 22-25.
  76. Fung, Y.C. (1955), An introduction to the theory of aeroelasticity, John Wiley, New York, NY.
  77. Global wind energy council, wind in numbers. Retrieved November 4, 2014, from http://www.gwec.net/globalfigures/wind-in-numbers/
  78. Glynne-Jones, P., Tudor, M., Beeby, S. and White, N. (2004), "An electromagnetic, vibration-powered generator for intelligent sensor systems", Sensor. Actuat. A-Phys., 110(1), 344-349. https://doi.org/10.1016/j.sna.2003.09.045
  79. Gomez, J.C., Bryant, M. and Garcia, E. (2014), "Low-order modeling of the unsteady aerodynamics in flapping wings", JAir, 1-10.
  80. Harne, R. and Wang, K. (2013), "A review of the recent research on vibration energy harvesting via bistable systems", Smart Mater. Struct., 22(2), 023001. https://doi.org/10.1088/0964-1726/22/2/023001
  81. Hobbs, W.B. and Hu, D.L. (2012), "Tree-inspired piezoelectric energy harvesting", JFS, 28, 103-114.
  82. Hobeck, J.D. and Inman, D. (2012a), "Design and analysis of dual pressure probes for predicting turbulence-Induced vibration in low velocity flow", Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
  83. Hobeck, J.D. and Inman, D.J. (2012b), "Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration", Smart Mater. Struct., 21(10), 105024. https://doi.org/10.1088/0964-1726/21/10/105024
  84. Hobeck, J.D. (2014), "Energy harvesting with piezoelectric grass for autonomous self-sustaining sensor networks", Ph.D. Dissertation, The University of Michigan.
  85. Hobeck, J.D. and Inman, D.J. (2014), "A distributed parameter electromechanical and statistical model for energy harvesting from turbulence-induced vibration", Smart Mater. Struct., 23(11), 115003. https://doi.org/10.1088/0964-1726/23/11/115003
  86. Hobeck, J.D., Geslain, D. and Inman, D.J. (2014), "The dual cantilever flutter phenomenon: a novel energy harvesting method", Proceedings of SPIE, 906113.
  87. Hodges, D.H. and Pierce, G.A. (2002), Introduction to Structural Dynamics and Aeroelasticity (Vol. 15), Cambridge University Press.
  88. Howey, D., Bansal, A. and Holmes, A. (2011), "Design and performance of a centimetre-scale shrouded wind turbine for energy harvesting", Smart Mater. Struct., 20(8), 085021. https://doi.org/10.1088/0964-1726/20/8/085021
  89. Huang, L. (1995), "Flutter of cantilevered plates in axial flow", JFS, 9(2), 127-147.
  90. Humdinger Wind Energy, Windbelt Innovation. Retrieved November 7, 2014, from http://www.humdingerwind.com
  91. Jeon, Y., Sood, R., Jeong, J.H. and Kim, S.G. (2005), "MEMS power generator with transverse mode thin film PZT", Sensor. Actuat. A.-Phys., 122(1), 16-22. https://doi.org/10.1016/j.sna.2004.12.032
  92. Jones, K.D., Davids, S. and Platzer, M.F. (1999), "Oscillatingwing power generator", Proceedings of the ASME/JSME joint fluids engineering conference.
  93. Jung, H.J. and Lee, S.W. (2011), "The experimental validation of a new energy harvesting system based on the wake galloping phenomenon", Smart Mater. Struct., 20(5), 055022. https://doi.org/10.1088/0964-1726/20/5/055022
  94. Karami, M.A. (2012), "Micro-scale and nonlinear vibrational energy harvesting", Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
  95. Karami, M.A., Farmer, J.R. and Inman, D.J. (2013), "Parametrically excited nonlinear piezoelectric compact wind turbine", Renew. Energ., 50, 977-987. https://doi.org/10.1016/j.renene.2012.07.037
  96. Kim, H.S., Kim, J.H. and Kim, J. (2011), "A review of piezoelectric energy harvesting based on vibration", Int. J. Precision Eng. Manufact., 12(6), 1129-1141. https://doi.org/10.1007/s12541-011-0151-3
  97. Kishore, R.A., Coudron, T. and Priya, S. (2013), "Small-scale wind energy portable turbine (SWEPT)", J. Wind Eng. Ind. Aerod., 116, 21-31. https://doi.org/10.1016/j.jweia.2013.01.010
  98. Kwon, S.D. (2010), "A T-shaped piezoelectric cantilever for fluid energy harvesting", Appl. Phys. Lett., 97(16), 164102. https://doi.org/10.1063/1.3503609
  99. Lallart, M. and Guyomar, D. (2008), "An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output", Smart Mater. Struct., 17(3), 035030. https://doi.org/10.1088/0964-1726/17/3/035030
  100. Lee, B., Price, S. and Wong, Y. (1999), "Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos", PrAeS, 35(3), 205-334.
  101. Lefeuvre, E., Badel, A., Richard, C. and Guyomar, D. (2007), "Energy harvesting using piezoelectric materials: Case of random vibrations", J. Electroceram., 19(4), 349-355. https://doi.org/10.1007/s10832-007-9051-4
  102. Lefeuvre, E., Badel, A., Richard, C., Petit, L. and Guyomar, D. (2006), "A comparison between several vibration-powered piezoelectric generators for standalone systems", Sensors Actuat. A: Phys., 126(2), 405-416. https://doi.org/10.1016/j.sna.2005.10.043
  103. Li, F., Xiang, T., Chi, Z., Luo, J., Tang, L., Zhao, L. and Yang, Y. (2013), "Powering indoor sensing with airflows: a trinity of energy harvesting, synchronous duty-cycling, and sensing", Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems.
  104. Liang, J. and Liao, W.H. (2012), "Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems", ITIE, 59(4), 1950-1960.
  105. Lien, I.C., Shu, Y.C., Wu, W.J., Shiu, S.M. and Lin, H.C. (2010), "Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting", Smart Mater. Struct., 19(12), 125009. https://doi.org/10.1088/0964-1726/19/12/125009
  106. Lu, F., Lee, H. and Lim, S. (2004), "Modeling and analysis of micro piezoelectric power generators for microelectromechanical-systems applications", Smart Mater. Struct., 13(1), 57. https://doi.org/10.1088/0964-1726/13/1/007
  107. Mahajan, A.J., Kaza, K.R. and Dowell, E. (1993), "Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter", JFS, 7(1), 87-103.
  108. McAlister, K.W., Lambert, O. and Petot, D. (1984), "Application of the ONERA model of dynamic stall", DTIC Document, No. NASA-A-9824.
  109. McCarthy, J.M., Watkins, S., Deivasigamani, A. and John, S.J. (2016), "Fluttering energy harvesters in the wind: A review", J. Sound Vib., 361, 355-377. https://doi.org/10.1016/j.jsv.2015.09.043
  110. McKinney, W. and Delaurier, J. (1981), "Wingmill: an oscillatingwing windmill", JEner, 5(2), 109-115. https://doi.org/10.2514/3.62510
  111. Mehmood, A., Abdelkefi, A., Hajj, M.R., Nayfeh, A.H., Akhtar, I. and Nuhait, A.O. (2013), "Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder", J. Sound Vib., 332(19), 4656-4667. https://doi.org/10.1016/j.jsv.2013.03.033
  112. Meninger, S., Mur-Miranda, J.O., Amirtharajah, R., Chandrakasan, A.P. and Lang, J.H. (2001), "Vibration-to-electric energy conversion", IEEE T. Very Large Scale Integration (VLSI) Systems, 9(1), 64-76. https://doi.org/10.1109/92.920820
  113. Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E., Holmes, A. and Green, T. (2004), "MEMS electrostatic micropower generator for low frequency operation", Sensors Actuat. A: Phys., 115(2), 523-529. https://doi.org/10.1016/j.sna.2004.04.026
  114. Myers, R., Vickers, M., Kim, H. and Priya, S. (2007), "Small scale windmill", Appl. Phys. Lett., 90(5), 054106. https://doi.org/10.1063/1.2435346
  115. Novak, M. (1969), "Aeroelastic galloping of prismatic bodies", J. Eng. Mech. Div.-ASCE, 95, 115-142.
  116. Novak, M. and Tanaka, H. (1974), "Effect of turbulence on galloping instability", J. Eng. Mech.-ASCE 100(1), 27-47.
  117. Paidoussis, M.P., Price, S.J. and De Langre, E. (2010), Fluidstructure interactions: Cross-flow-induced instabilities, Cambridge University Press, New York.
  118. Park, J., Morgenthal, G., Kim, K., Kwon, S.D. and Law, K.H. (2014), "Power evaluation of flutter-based electromagnetic energy harvesters using computational fluid dynamics simulations", J. Intel. Mat. Syst. Str., 25(14), 1800-1812. https://doi.org/10.1177/1045389X14526954
  119. Park, J.W., Jung, H.J., Jo, H. and Spencer, B.F. (2012), "Feasibility study of micro-wind turbines for powering wireless sensors on a cable-stayed bridge", Energies, 5(9), 3450-3464. https://doi.org/10.3390/en5093450
  120. Pellegrini, S.P., Tolou, N., Schenk, M. and Herder, J.L. (2013), "Bistable vibration energy harvesters: A review", J. Intel. Mat. Syst. Str., 24(11), 1303-1312. https://doi.org/10.1177/1045389X12444940
  121. Peters, D.A. (1985), "Toward a unified lift model for use in rotor blade stability analyses", J. Am. Helicopter Soc., 30(3), 32-42. https://doi.org/10.4050/JAHS.30.32
  122. Peters, D.A., Karunamoorthy, S. and Cao, W.M. (1995), "Finite state induced flow models. I-Two-dimensional thin airfoil", JAir, 32(2), 313-322.
  123. Piezoelectric materials. Retrieved November 4, 2014, from http://www.piezomaterials.com/
  124. Pobering, S. and Schwesinger, N. (2008), "Power supply for wireless sensor systems", Proceedings of Sensors, 2008 IEEE, 685-688.
  125. Pobering, S., Menacher, M., Ebermaier, S. and Schwesinger, N. (2009), "Piezoelectric power conversion with self-induced oscillation", Proceedings of PowerMEMS, 384-387.
  126. Powell, A. (1958), "On the fatigue failure of structures due to vibrations excited by random pressure fields", J. Acoust. Soc. Am., 30(12), 1130-1135. https://doi.org/10.1121/1.1909481
  127. Priya, S. (2005), "Modeling of electric energy harvesting using piezoelectric windmill", Appl. Phys. Lett., 87(18), 184101. https://doi.org/10.1063/1.2119410
  128. Priya, S., Chen, C.T., Fye, D. and Zahnd, J. (2005), "Piezoelectric windmill: A novel solution to remote sensing", Jpn. J. Appl. Phys., 44(3), 104-107. https://doi.org/10.1143/JJAP.44.L104
  129. Rancourt, D., Tabesh, A. and Frechette, L.G. (2007), "Evaluation of centimeter-scale micro windmills: aerodynamics and electromagnetic power generation", Proceedings of PowerMEMS, 93-96.
  130. Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131-1142. https://doi.org/10.1088/0964-1726/13/5/018
  131. Roundy, S., Wright, P.K. and Rabaey, J. (2003), "A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., 26(11), 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7
  132. Ruscheweyh, H. (1983), "Aeroelastic interference effects between slender structures", J. Wind Eng. Ind. Aerod., 14(1), 129-140. https://doi.org/10.1016/0167-6105(83)90017-X
  133. Sarpkaya, T. (2004), "A critical review of the intrinsic nature of vortex-induced vibrations", JFS, 19(4), 389-447.
  134. Schmidt, V.H. (1985), US4536674 A.
  135. Schmidt, V.H. (1992), "Piezoelectric energy conversion in windmills", Proceedings of Ultrasonics Symposium, IEEE 1992, 897-904.
  136. Shiraishi, N., Matsumoto, M. and Shirato, H. (1986), "On aerodynamic instabilities of tandem structures", J. Wind Eng. Ind. Aerod., 23, 437-447. https://doi.org/10.1016/0167-6105(86)90061-9
  137. Sirohi, J. and Mahadik, R. (2011), "Piezoelectric wind energy harvester for low-power sensors", J. Intel. Mat. Syst. Str., 22(18), 2215-2228. https://doi.org/10.1177/1045389X11428366
  138. Sirohi, J. and Mahadik, R. (2012), "Harvesting wind energy using a galloping piezoelectric beam", J. Vib. Acoust., 134(1), 011009. https://doi.org/10.1115/1.4004674
  139. Sivadas, V. and Wickenheiser, A.M. (2011), "A study of several vortex-induced vibration techniques for piezoelectric wind energy harvesting", Proceedings of SPIE, 79770F.
  140. Sodano, H.A., Park, G. and Inman, D.J. (2004), "An investigation into the performance of macro-fiber composites for sensing and structural vibration applications", MSSP, 18(3), 683-697.
  141. Sorribes-Palmer, F. and Sanz-Andres, A. (2013), "Optimization of energy extraction in transverse galloping", JFS, 43, 124-144.
  142. Sousa, V., De M Anicezio, M., De Marqui Jr., C. and Erturk, A. (2011), "Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment", Smart Mater. Struct., 20(9), 094007. https://doi.org/10.1088/0964-1726/20/9/094007
  143. Stanton, S.C., Erturk, A., Mann, B.P. and Inman, D.J. (2010), "Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification", J. Appl. Phys., 108(7), 074903. https://doi.org/10.1063/1.3486519
  144. Sterken, T., Fiorini, P., Baert, K., Borghs, G. and Puers, R. (2004), "Novel design and fabrication of a MEMS electrostatic vibration scavenger", Proceedings of PowerMEMS 18-21.
  145. Strasser, M., Aigner, R., Lauterbach, C., Sturm, T., Franosch, M. and Wachutka, G. (2004), "Micromachined CMOS thermoelectric generators as on-chip power supply", Sensors Actuat. A: Phys., 114(2), 362-370. https://doi.org/10.1016/j.sna.2003.11.039
  146. Strganac, T.W., Ko, J. and Thompson, D.E. (2000), "Identification and control of limit cycle oscillations in aeroelastic systems", J. Guid. Control, Dynam., 23(6), 1127-1133. https://doi.org/10.2514/2.4664
  147. Tang, D. and Dowell, E. (1996), "Comments on the ONERA stall aerodynamic model and its impact on aeroelastic stability", JFS, 10(4), 353-366.
  148. Tang, D.M., Yamamoto, H. and Dowell, E.H. (2003), "Flutter and limit cycle oscillations of two-dimensional panels in threedimensional axial flow", JFS, 17(2), 225-242.
  149. Tang, L., Yang, Y. and Soh, C.K. (2010), "Toward broadband vibration-based energy harvesting", J. Intel. Mat. Syst. Str., 21(18), 1867-1897. https://doi.org/10.1177/1045389X10390249
  150. Tang, L., Zhao, L., Yang, Y. and Lefeuvre, E. (2015), "Equivalent circuit representation and analysis of galloping-based wind energy harvesting", IEEE/ASME T. Mechatronics, 20, 834-844. https://doi.org/10.1109/TMECH.2014.2308182
  151. Theodorsen, T. (1934). General Theory of Aerodynamic Instability and the Mechanism of Flutter.
  152. Tien, C.M.T. and Goo, N.S. (2010), "Use of a piezo-composite generating element for harvesting wind energy in an urban region", Aircraft Eng. Aerospace Technol., 82(6), 376-381. https://doi.org/10.1108/00022661011104538
  153. Tokoro, S., Komatsu, H., Nakasu, M., Mizuguchi, K. and Kasuga, A. (2000), "A study on wake-galloping employing full aeroelastic twin cable model", J. Wind Eng. Ind. Aerod., 88(2), 247-261. https://doi.org/10.1016/S0167-6105(00)00052-0
  154. Torres, E.O. and Rincon-Mora, G.A. (2009), "Electrostatic energyharvesting and battery-charging CMOS system prototype", IEEE Transactions on Circuits and Systems I: Regular Papers, 56(9), 1938-1948. https://doi.org/10.1109/TCSI.2008.2011578
  155. Tran, C.T. and Petot, D. (1981), "Semi-empirical model for the dynamic stall of airfoils in view of application to the calculated responses of a helicopter in forward flight", Vert, 51, 35-53.
  156. Truitt, A. and Mahmoodi, S.N. (2013), "A review on active wind energy harvesting designs", Int. J. Precision Eng. Manufact., 14(9), 1667-1675. https://doi.org/10.1007/s12541-013-0226-4
  157. Vestas V164-8.0 nacelle and hub. Retrieved November 4, 2014, from http://www.windpowermonthly.com/article/1211056/close---vestas-v164-80-nacelle-hub
  158. Wang, Y. (2012), "Simultaneous energy harvesting and vibration control via piezoelectric materials", Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
  159. Wang, Z.L. (2011), Nanogenerators for self-powered devices and systems, Georgia Institute of Technology, Atlanta.
  160. Weinstein, L.A., Cacan, M.R., So, P.M. and Wright, P.K. (2012), "Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows", Smart Mater. Struct., 21(4), 045003. https://doi.org/10.1088/0964-1726/21/4/045003
  161. Wickenheiser, A.M., Reissman, T., Wu, W.J. and Garcia, E. (2010), "Modeling the effects of electromechanical coupling on energy storage through piezoelectric energy harvesting", IEEE/ASME T. Mechatronics, 15(3), 400-411. https://doi.org/10.1109/TMECH.2009.2027318
  162. Williams, C.B. and Yates, R.B. (1996), "Analysis of a microelectric generator for microsystems", Sensor. Actuat. A.-Phys., 52(1-3), 8-11. https://doi.org/10.1016/0924-4247(96)80118-X
  163. Williamson, C.H. (1996), "Vortex dynamics in the cylinder wake", AnRFM, 28(1), 477-539.
  164. Williamson, C.H.K. and Govardhan, R. (2004), "Vortex-induced vibrations", AnRFM, 36(1), 413-455.
  165. Xiang, J., Wu, Y. and Li, D. (2015), "Energy harvesting from the discrete gust response of a piezoaeroelastic wing: Modeling and performance evaluation", J. Sound Vib., 343, 176-193. https://doi.org/10.1016/j.jsv.2014.12.023
  166. Xiang, J., Yan, Y. and Li, D. (2014), "Recent advance in nonlinear aeroelastic analysis and control of the aircraft", ChJA, 27(1), 12-22.
  167. Xiao, Q. and Zhu, Q. (2014), "A review on flow energy harvesters based on flapping foils", JFS, 46, 174-191.
  168. Xie, J., Yang, J., Hu, H., Hu, Y. and Chen, X. (2012), "A piezoelectric energy harvester based on flow-induced flexural vibration of a circular cylinder", J. Intel. Mat. Syst. Str., 23(2), 135-139. https://doi.org/10.1177/1045389X11431744
  169. Xu, F., Yuan, F., Hu, J. and Qiu, Y. (2010), "Design of a miniature wind turbine for powering wireless sensors", Proceedings of SPIE, 764741.
  170. Yan, Z. and Abdelkefi, A. (2014), "Nonlinear characterization of concurrent energy harvesting from galloping and base excitations", Nonlinear Dynam., 77(4), 1171-1189. https://doi.org/10.1007/s11071-014-1369-2
  171. Yang, Y. and Tang, L. (2009), "Equivalent circuit modeling of piezoelectric energy harvesters", J. Intel. Mat. Syst. Str., 20(18), 2223-2235. https://doi.org/10.1177/1045389X09351757
  172. Yang, Y., Zhao, L. and Tang, L. (2013), "Comparative study of tip cross-sections for efficient galloping energy harvesting", Appl. Phys. Lett., 102(6), 064105. https://doi.org/10.1063/1.4792737
  173. Zhao, L. (2015), "Small-scale wind energy harvesting using piezoelectric materials", Ph.D. Dissertation, Nanyang Technological University.
  174. Zhao, L. and Yang, Y. (2015a), "Enhanced aeroelastic energy harvesting with a beam stiffener", Smart Mater. Struct., 24(3), 032001. https://doi.org/10.1088/0964-1726/24/3/032001
  175. Zhao, L. and Yang, Y. (2015b), "Analytical solutions for galloping-based piezoelectric energy harvesters with various interfacing circuits", Smart Mater. Struct., 24(7), 075023. https://doi.org/10.1088/0964-1726/24/7/075023
  176. Zhao, L. and Yang, Z. (1990), "Chaotic motions of an airfoil with non-linear stiffness in incompressible flow", J. Sound Vib., 138(2), 245-254. https://doi.org/10.1016/0022-460X(90)90541-7
  177. Zhao, L., Liang, J., Tang, L., Yang, Y. and Liu, H. (2015), "Enhancement of galloping-based wind energy harvesting by synchronized switching interface circuits", Proceedings of SPIE, 943113.
  178. Zhao, L., Tang, L. and Yang, Y. (2012), "Small wind energy harvesting from galloping using piezoelectric materials", Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems.
  179. Zhao, L., Tang, L. and Yang, Y. (2013), "Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester", Smart Mater. Struct., 22(12), 125003. https://doi.org/10.1088/0964-1726/22/12/125003
  180. Zhao, L., Tang, L. and Yang, Y. (2014a), "Enhanced piezoelectric galloping energy harvesting using 2 degree-of-freedom cut-out cantilever with magnetic interaction", Jpn. J. Appl. Phys., 53(6), 060302. https://doi.org/10.7567/JJAP.53.060302
  181. Zhao, L., Tang, L. and Yang, Y. (2016), "Synchronized charge extraction in galloping piezoelectric energy harvesting", J. Intel. Mat. Syst. Str., 27(4), 453-468. https://doi.org/10.1177/1045389X15571384
  182. Zhao, L., Tang, L., Wu, H. and Yang, Y. (2014b), "Synchronized charge extraction for aeroelastic energy harvesting", Proceedings of SPIE, 90570N.
  183. Zhu, Q. (2011), "Optimal frequency for flow energy harvesting of a flapping foil", J. Fluid Mech., 675, 495-517. https://doi.org/10.1017/S0022112011000334
  184. Zhu, Q. and Peng, Z. (2009), "Mode coupling and flow energy harvesting by a flapping foil", Physics of Fluids (1994-present), 21(3), 033601. https://doi.org/10.1063/1.3092484
  185. Zhu, Q., Haase, M. and Wu, C.H. (2009), "Modeling the capacity of a novel flow-energy harvester", Appl. Math. Model., 33(5), 2207-2217. https://doi.org/10.1016/j.apm.2008.05.027

Cited by

  1. Aeroelastic flutter enhancement by exploiting the combined use of shape memory alloys and nonlinear piezoelectric circuits vol.407, 2017, https://doi.org/10.1016/j.jsv.2017.06.034
  2. An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting vol.212, 2018, https://doi.org/10.1016/j.apenergy.2017.12.042
  3. Dual serial vortex-induced energy harvesting system for enhanced energy harvesting vol.8, pp.7, 2018, https://doi.org/10.1063/1.5038884
  4. Influences of Environmental Motion Modes on the Efficiency of Ultrathin Flexible Piezoelectric Energy Harvesters vol.32, pp.5, 2017, https://doi.org/10.1007/s10338-019-00085-8
  5. Piezoelectric vortex induced vibration energy harvesting in a random flow field vol.29, pp.3, 2017, https://doi.org/10.1088/1361-665x/ab519f
  6. Vibration Energy Storage System of Subway Track Based on Piezoelectric Cantilever Beam vol.647, pp.None, 2017, https://doi.org/10.1088/1755-1315/647/1/012149
  7. PZT계 압전 세라믹 파이버 복합체의 기계적 물성과 압전 풍력 에너지 하베스팅 특성 vol.34, pp.2, 2017, https://doi.org/10.4313/jkem.2021.34.2.90
  8. Theoretical modeling and analysis of piezoelectric energy harvester with variable section overhanging beam vol.1906, pp.1, 2017, https://doi.org/10.1088/1742-6596/1906/1/012019