DOI QR코드

DOI QR Code

Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate

  • Received : 2016.09.17
  • Accepted : 2016.10.21
  • Published : 2017.01.25

Abstract

The composite plate to upgrade structures and, in particular, to extend the lives of reinforced concrete beams has wide applications. One of the main aspects of the bonded strengthening technology is the stress analysis of the reinforced structure. In particular, reliable evaluation of the adhesive shear stress and of the stress in the composite plates is mandatory in order to predict the beam's failure load. In this paper, a finite element analysis is presented to calculate the stresses in the reinforced beam under mechanical loads. The numerical results was compared with the analytical approach, and a parametric study was carried out to show how the maximum stresses have been influenced by the material and geometry parameters of the composite beam.

Keywords

References

  1. Abaqus guide Version 6.7 (2007), "Computer software for interactive finite element analysis by Hibbitt", Karlsson & Sorensen, Inc. Pawtucket, RI.
  2. Benyoucef, S., Tounsi, A., Meftah, S.A. and Adda Bedia, E.A. (2006), "Approximate analysis of the interfacial stress concentrations in FRP-RC hybrid beams", Compos. Interface., 13(7), 561-571. https://doi.org/10.1163/156855406778440758
  3. Bouakaz, K., Hassaine Daouadji, T., Meftah, S.A., Ameur, M. and Adda Bedia, E.A. (2014), "A numerical analysis of steel beams strengthened with composite materials", Mech. Compos.Mater., 50(4), 685-696.
  4. Choi, D.U., Kang, T.H.K., Ha, S.S., Kim, K.H. and Kim, W. (2011), "Flexural and bond behavior of concrete beams strengthened with hybrid carbon-glass fiber-reinforced polymer sheets", ACI Struct. J., 180(1), 90-98.
  5. El Mahi Benrahou, K.H., Belakhdar, K., Tounsi, A. and Adda Bedia, E.A. (2014), "Effect of the tapered of the end of a FRP plate on the interfacial stresses in a strengthened beam used in civil engineering applications", Mech. Compos. Mater., 50(4), 465-474.
  6. Guenaneche, B., Tounsi, A. and Adda Bedia, E.A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Adhesion & Adhesives, 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016
  7. Kang, T.H.K., Howell, J., Kim, S. and Lee, D.J. (2012), "A State-of-the-art review on debonding failures of FRP laminates externally adhered to concrete", Int. J. Concrete Struct. Mater., 6(2), 123-134. https://doi.org/10.1007/s40069-012-0012-1
  8. Krour, B., Bernard, F. and Tounsi, A. (2014), "Fibers orientation optimization for concrete beam strengthened with a CFRP bonded plate: A coupled analytical-numerical investigation", Eng. Struct., 56, 218-227.
  9. Hadji, L., Hassaine daouadji, T., Ait Amar Meziane, M., Tlidji, Y. and Adda Bedia, E.A. (2016), "Analyze of the interfacial stress in reinforced concrete beams strengthened with externally bonded CFRP plate", Steel Compos. Struct., 20(2), 413-429. https://doi.org/10.12989/scs.2016.20.2.413
  10. Hassaine Daouadji, T., Tounsi, A. and Adda bedia, E.A. (2012), "Analyse des contraintes d'interface dans les poutres en beton arme renforcees par collage des stratifiees composites", Revue de genie industriel, 8, 3-12.
  11. Hassaine Daouadji, T., Hadji, L., Ait Amar Meziane, M. and Bekki, H. (2016), "Elastic analysis effect of adhesive layer characteristics in steel beam strengthened with a fiber-reinforced polymer plates", Struct. Eng. Mech., 59(1), 83-100. https://doi.org/10.12989/sem.2016.59.1.083
  12. Yang, J., Ye, J. and Niu, Z. (2007), "Interfacial shear stress in FRP-plated RC beams under symmetric loads", Cement Concrete Compos., 29(5), 421-432. https://doi.org/10.1016/j.cemconcomp.2006.11.011
  13. Yang, J. and Ye, J. (2010), "An improved closed-form solution to interfacial stresses in plated beams using a two-stage approach", Int. J. Mech. Sci., 52(1), 13-30. https://doi.org/10.1016/j.ijmecsci.2009.09.041
  14. Jones, R., Swamy, R.N. and Charif, A. (1988), "Plate separation and anchorage of reinforced concrete beams strengthened by epoxy-bonded steel plates", Struct. Eng., 66(5), 85-94.
  15. Rabahi, A., Adim, B., Chergui, S. and Hassaine Daouadji, T. (2015), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Multiphys. Model. Simulat. Syst. Des. Monit. Appl. Condition Monit., 2, 317-326.
  16. Rabahi, A., Hassaine Daouadji, T., Abbes, B. and Adim, B. (2016), "Analytical and numerical solution of the interfacial stress in reinforced-concrete beams reinforced with bonded prestressed composite plate", J. Reinforce. Plast. Compos., 35(3), 258-272. https://doi.org/10.1177/0731684415613633
  17. Ramseyer, C. and Kang, T.H.K. (2012), "Post-damage repair of prestressed concrete girders", Int. J. Concrete Struct. Mater., 6(3), 199-207. https://doi.org/10.1007/s40069-012-0019-7
  18. Roberts, T.M. (1989), "Approximate analysis of shear and normal stress concentrations in the adhesive layer of plated RC beams", Struct. Eng., 67(12), 229-233.
  19. Shen, H.S., Teng, J.G. and Yang, J. (2001), "Interfacial stresses in beams and slabs bonded with thin plate", J. Eng. Mech., ASCE, 127(4), 399-406. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(399)
  20. Smith, S.T. and Teng, J.G. (2001), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. https://doi.org/10.1016/S0141-0296(00)00090-0
  21. Touati, M., Tounsi, A. and Benguediab, M. (2015), "Effect of shear deformation on adhesive stresses in plated concrete beams: Analytical solutions", Comput. Concrete, 15(3), 141-166. https://doi.org/10.12989/cac.2015.15.2.141
  22. Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solid. Struct., 43(14), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074
  23. Tounsi, A. and Benyoucef, S. (2007), "Interfacial stresses in externally FRP-plated concrete beams", Int. J. Adhes Adhes, 27(3), 207-215. https://doi.org/10.1016/j.ijadhadh.2006.01.009
  24. Tounsi, A., Hassaine Daouadji, T., Benyoucef, S. and Adda bedia, E.A. (2009), "Interfacial stresses in FRPplated RC beams: Effect of adherend shear deformations", Int. J. adhesion and adhesives, 29(4), 313-351.
  25. Zidani, M.B., Belakhdar, K., Tounsi, A. and Adda Bedia, E.A. (2015), "Finite element analysis of initially damaged beams repaired with FRP plates", Compos. Struct., 134, 429-439. https://doi.org/10.1016/j.compstruct.2015.07.124
  26. Yang, J. and Wu, Y.F. (2007), "Interfacial stresses of FRP strengthened concrete beams: Effect of shear deformation", Compos. Struct., 80(3), 343-351. https://doi.org/10.1016/j.compstruct.2006.05.016
  27. Zhang, X., Zhu, D., Yao, Y., Zhang, H. and Mobasher, B. (2016), "Experimental study of tensile behaviour of AFRP under different strain rates and temperatures", Struct. Integrity Maint., 1(1), 22-34. https://doi.org/10.1080/24705314.2016.1153327

Cited by

  1. Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates vol.7, pp.2, 2017, https://doi.org/10.12989/amr.2018.7.2.119
  2. Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations vol.72, pp.1, 2017, https://doi.org/10.12989/sem.2019.72.1.061
  3. Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate vol.72, pp.3, 2017, https://doi.org/10.12989/sem.2019.72.3.293
  4. Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study vol.72, pp.4, 2019, https://doi.org/10.12989/sem.2019.72.4.409
  5. Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2017, https://doi.org/10.12989/scs.2019.33.5.699
  6. Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2017, https://doi.org/10.12989/scs.2020.34.5.643
  7. Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body vol.21, pp.1, 2017, https://doi.org/10.12989/gae.2020.21.1.001
  8. Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2017, https://doi.org/10.12989/cac.2020.25.4.311
  9. An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates vol.74, pp.3, 2017, https://doi.org/10.12989/sem.2020.74.3.365
  10. Flexural performance of wooden beams strengthened by composite plate vol.7, pp.3, 2020, https://doi.org/10.12989/smm.2020.7.3.233
  11. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2017, https://doi.org/10.12989/amr.2020.9.4.265
  12. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  13. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2017, https://doi.org/10.12989/scs.2020.37.6.695
  14. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2017, https://doi.org/10.12989/sem.2021.77.2.217
  15. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2017, https://doi.org/10.12989/csm.2021.10.1.061
  16. Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations vol.77, pp.6, 2017, https://doi.org/10.12989/sem.2021.77.6.797
  17. Modeling and analysis of the imperfect FGM-damaged RC hybrid beams vol.6, pp.2, 2017, https://doi.org/10.12989/acd.2021.6.2.117
  18. Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT vol.91, pp.7, 2017, https://doi.org/10.1007/s00419-021-01973-7
  19. A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage vol.79, pp.5, 2017, https://doi.org/10.12989/sem.2021.79.5.531
  20. New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2017, https://doi.org/10.12989/amr.2021.10.3.169