DOI QR코드

DOI QR Code

Multiphase turbulence mechanisms identification from consistent analysis of direct numerical simulation data

  • Magolan, Ben (Department of Nuclear Science and Engineering, Massachusetts Institute of Technology) ;
  • Baglietto, Emilio (Department of Nuclear Science and Engineering, Massachusetts Institute of Technology) ;
  • Brown, Cameron (Department of Nuclear Engineering, North Carolina State University) ;
  • Bolotnov, Igor A. (Department of Nuclear Engineering, North Carolina State University) ;
  • Tryggvason, Gretar (Department of Aerospace and Mechanical Engineering, University of Notre Dame) ;
  • Lu, Jiacai (Department of Aerospace and Mechanical Engineering, University of Notre Dame)
  • Received : 2017.06.02
  • Accepted : 2017.08.02
  • Published : 2017.09.25

Abstract

Direct Numerical Simulation (DNS) serves as an irreplaceable tool to probe the complexities of multiphase flow and identify turbulent mechanisms that elude conventional experimental measurement techniques. The insights unlocked via its careful analysis can be used to guide the formulation and development of turbulence models used in multiphase computational fluid dynamics simulations of nuclear reactor applications. Here, we perform statistical analyses of DNS bubbly flow data generated by Bolotnov ($Re_{\tau}=400$) and LueTryggvason ($Re_{\tau}=150$), examining single-point statistics of mean and turbulent liquid properties, turbulent kinetic energy budgets, and two-point correlations in space and time. Deformability of the bubble interface is shown to have a dramatic impact on the liquid turbulent stresses and energy budgets. A reduction in temporal and spatial correlations for the streamwise turbulent stress (uu) is also observed at wall-normal distances of $y^+=15$, $y/{\delta}=0.5$, and $y/{\delta}=1.0$. These observations motivate the need for adaptation of length and time scales for bubble-induced turbulence models and serve as guidelines for future analyses of DNS bubbly flow data.

Keywords

References

  1. G. Yeoh, J. Tu, Computational Techniques for Multiphase Flows - Basics and Applications, Butterworth-Heinemann, Oxford, UK, 2010.
  2. M. Ishii, T. Hibiki, Thermo-fluid Dynamics of Two-phase Flow, second ed., Springer, New York, 2011.
  3. Y. Sato, M. Sadatomi, K. Sekoguchi, Momentum and heat transfer in two-phase bubble flow-I, Int. J. Multiphase Flow 7 (1981) 167. https://doi.org/10.1016/0301-9322(81)90003-3
  4. A. Troshko, Y. Hassan, A two-equation turbulence model of turbulent bubbly flows, Int. J. Multiphase Flow 27 (2001) 1965. https://doi.org/10.1016/S0301-9322(01)00043-X
  5. M. Politano, P. Carrica, J. Converti, A model for turbulent polydisperse two-phase flow in vertical channels, Int. J. Multiphase Flow 29 (2003) 1153. https://doi.org/10.1016/S0301-9322(03)00065-X
  6. R. Rzehak, E. Krepper, CFD modeling of bubble-induced turbulence, Int. J. Multiphase Flow 55 (2013) 138. https://doi.org/10.1016/j.ijmultiphaseflow.2013.04.007
  7. M. Colombo, M. Fairweather, S. Lo, A. Splawski, Multiphase RANS Simulation of Turbulent Bubbly Flows, Proc. NURETH-16, Chicago, IL, USA, 2015.
  8. S. Wang, S. Lee, O. Jones, R. Lahey, 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows, Int. J. Multiphase Flow 13 (1987) 327. https://doi.org/10.1016/0301-9322(87)90052-8
  9. M. Shawkat, C. Ching, M. Shoukri, On the liquid turbulence energy spectra in two-phase bubbly flow in a large diameter vertical pipe, Int. J. Multiphase Flow 33 (2007) 300. https://doi.org/10.1016/j.ijmultiphaseflow.2006.09.002
  10. A. Serizawa, I. Kataoka, Turbulence suppression in bubbly two-phase flow, Nucl. Eng. Des. 122 (1990) 1. https://doi.org/10.1016/0029-5493(90)90193-2
  11. T. Liu, S. Bankoff, Structure of airewater bubbly flow in a vertical pipe - I. Liquid mean velocity and turbulence measurements, Int. J. Heat Mass Transfer 36 (1993) 1049. https://doi.org/10.1016/S0017-9310(05)80289-3
  12. T. Liu, Experimental investigation of turbulence structure in two-phase structure in two-phase bubbly flow (Ph.D. Thesis), Northwestern University, 1989.
  13. M. Lance, J. Bataille, Turbulence in the liquid phase of a uniform bubbly air-water flow, J. Fluid Mech. 222 (1991) 95. https://doi.org/10.1017/S0022112091001015
  14. J. Mercado, D. Gomez, D. Van Gils, C. Sun, D. Lohse, On bubble clustering and energy spectra in pseudo-turbulence, J. Fluid Mech. 650 (2010) 287. https://doi.org/10.1017/S0022112009993570
  15. I. Roghair, J. Mercado, M. Annaland, H. Kuipers, C. Sun, D. Lohse, Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations vs. experiments, Int. J. Multiphase Flow 37 (2011) 1093. https://doi.org/10.1016/j.ijmultiphaseflow.2011.07.004
  16. C. Brown, I.A. Bolotnov, Spectral analysis of single- and two-phase bubbly DNS in different geometries, Nucl. Sci. Eng. 184 (2016) 363-376. https://doi.org/10.13182/NSE15-126
  17. J. Lelouvetel, T. Tanaka, Y. Sato, Y. Hishida, Transport mechanisms of the turbulent energy cascade in upward/downward bubbly flows, J. Fluid Mech. 741 (2014) 514. https://doi.org/10.1017/jfm.2014.24
  18. C. Santarelli, J. Roussel, J. Frohlich, Budget analysis of the turbulent kinetic energy for bubbly flow in a vertical channel, Chem. Eng. Sci. 141 (2016) 46. https://doi.org/10.1016/j.ces.2015.10.013
  19. A. Esmaeeli, G. Tryggvason, Direct numerical simulations of bubbly flows: Part 2. Moderate Reynolds number arrays, J. Fluid Mech 385 (1999) 325. https://doi.org/10.1017/S0022112099004310
  20. B. Bunner, G. Tryggvason, Effect of bubble deformation on the stability and properties of bubbly flows, J. Fluid Mech. 495 (2003) 77. https://doi.org/10.1017/S0022112003006293
  21. I.A. Bolotnov, Influence of bubbles on the turbulence anisotropy, J. Fluids Eng. 135 (2013) 051301. https://doi.org/10.1115/1.4023651
  22. J. Lu, G. Tryggvason, Effect of bubble deformability in turbulent bubbly upflow in a vertical channel, Phys. Fluids 20 (2008) 040701. https://doi.org/10.1063/1.2911034
  23. J. Lu, G. Tryggvason, Dynamics of nearly spherical bubbles in turbulent channel upflow, J. Fluid Mech. 732 (2013) 166. https://doi.org/10.1017/jfm.2013.397
  24. J. Fang, M. Rasquin, I.A. Bolotnov, Interface tracking simulations of bubbly flows in PWR relevant geometries, Nucl. Eng. Des. 312 (2017) 205-213. https://doi.org/10.1016/j.nucengdes.2016.07.002
  25. M. Ma, J. Lu, G. Tryggvason, Using statistical learning to close two-fluid multiphase flow equations for bubbly flows in vertical channels, Int. J. Multiphase Flow 85 (2016) 336. https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.021
  26. I. Kataoka, A. Serizawa, Basic equations of turbulence in gas-liquid two-phase flow, Int. J. Multiphase Flow 15 (1989) 843. https://doi.org/10.1016/0301-9322(89)90045-1
  27. I. Kataoka, K. Yoshida, M. Naitoh, H. Okada, T. Morii, Transport of interfacial area concentration in two-phase flow, in: A. Mesquita (Ed.), Nuclear Reactors, InTech, Rijeka, Croatia, 2012.
  28. K. Iwamoto, Y. Suzuki, N. Kasagi, Reynolds number effect on wall turbulence: toward effective feedback control, Int. J. Heat Fluid Flow 23 (2002) 678. https://doi.org/10.1016/S0142-727X(02)00164-9

Cited by

  1. Multifluid flows in a vertical channel undergoing topology changes: Effect of void fraction vol.4, pp.8, 2017, https://doi.org/10.1103/physrevfluids.4.084301
  2. Multi-Fluid Computational Fluid Dynamic Predictions of Turbulent Bubbly Flows Using an Elliptic-Blending Reynolds Stress Turbulence Closure vol.8, pp.None, 2017, https://doi.org/10.3389/fenrg.2020.00044
  3. Polymer drag reduction in surfactant-contaminated turbulent bubbly channel flows vol.6, pp.10, 2017, https://doi.org/10.1103/physrevfluids.6.104302
  4. Evaluation of models for bubble-induced turbulence by DNS and utilization in two-fluid model computations of an industrial pilot-scale bubble column vol.175, pp.None, 2017, https://doi.org/10.1016/j.cherd.2021.09.012