DOI QR코드

DOI QR Code

Atomistic simulations of nanocrystalline U0.5Th0.5O2 solid solution under uniaxial tension

  • Xiao, Hongxing (Department of Nuclear Fuel Technology, Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China) ;
  • Wang, Xiaomin (Department of Nuclear Fuel Technology, Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China) ;
  • Long, Chongsheng (Department of Nuclear Fuel Technology, Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China) ;
  • Tian, Xiaofeng (Department of Nuclear Science and Technology, The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Wang, Hui (Department of Nuclear Fuel Technology, Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China)
  • Received : 2017.05.07
  • Accepted : 2017.07.26
  • Published : 2017.12.25

Abstract

Molecular dynamics simulations were performed to investigate the uniaxial tensile properties of nanocrystalline $U_{0.5}Th_{0.5}O_2$ solid solution with the Born-Mayer-Huggins potential. The results indicated that the elastic modulus increased linearly with the density relative to a single crystal, but decreased with increasing temperature. The simulated nanocrystalline $U_{0.5}Th_{0.5}O_2$ exhibited a breakdown in the Halle-Petch relation with mean grain size varying from 3.0 nm to 18.0 nm. Moreover, the elastic modulus of $U_{1-y}Th_yO_2$ solid solutions with different content of thorium at 300 K was also studied and the results accorded well with the experimental data available in the literature. In addition, the fracture mode of nanocrystalline $U_{0.5}Th_{0.5}O_2$ was inclined to be ductile because the fracture behavior was preceded by some moderate amount of plastic deformation, which is different from what has been seen earlier in simulations of pure $UO_2$.

Keywords

References

  1. M. Lung, O. Gremm, Perspectives of the thorium fuel cycle, Nucl. Eng. Des. 180 (1998) 133-146. https://doi.org/10.1016/S0029-5493(97)00296-3
  2. R.K. Sinha, A. Kakodkar, Design and development of the AHWR-the Indian thorium fuelled innovative nuclear reactor, Nucl. Eng. Des. 236 (2006) 683-700. https://doi.org/10.1016/j.nucengdes.2005.09.026
  3. K. Anantharaman, V. Shivakumar, D. Saha, Utilisation of thorium in reactors, J. Nucl. Mater. 383 (2008) 119-121. https://doi.org/10.1016/j.jnucmat.2008.08.042
  4. C. Lombardi, L. Luzzi, E. Padovani, F. Vettraino, Inert matrix and thoria fuels for plutonium elimination, Prog. Nucl. Energy 38 (2001) 395-398. https://doi.org/10.1016/S0149-1970(00)00143-8
  5. O. Ipek, Analysis of temperature distribution, burn-up and breeding parameters in nuclear fuel rod in fusionefission reactor system fueled with mixed $ThO_2-UO_2$ fuel, Int. J. Energy Res. 35 (2011) 112-122. https://doi.org/10.1002/er.1771
  6. Y. Lu, Y. Yang, P. Zhang, Thermodynamic properties and structural stability of thorium dioxide, J. Phys. Condens. Matter 24 (2012) 225801. https://doi.org/10.1088/0953-8984/24/22/225801
  7. S.T. Murphy, M.W.D. Cooper, R.W. Grimes, Point defects and nonstoichiometry in thoria, Solid State Ion 267 (2014) 80-87. https://doi.org/10.1016/j.ssi.2014.09.017
  8. H. Stehle, H. Assmann, F. Wunderlich, Uranium dioxide properties for LWR fuel rods, Nucl. Eng. Des. 33 (1975) 230-260. https://doi.org/10.1016/0029-5493(75)90024-2
  9. L.O. Jernkvist, A continuum model for cracked $UO_2$ fuel, Nucl. Eng. Des. 176 (1997) 273-284. https://doi.org/10.1016/S0029-5493(97)00122-2
  10. I. Cohen, R.M. Berman, A metallographic and X-ray study of the limits of oxygen solubility in the $UO_2-ThO_2$ system, J. Nucl. Mater. 18 (1966) 77-107. https://doi.org/10.1016/0022-3115(66)90073-0
  11. A.C. Momin, E.B. Mirza, M.D. Mathews, High temperature X-ray diffractometric studies on the lattice thermal expansion behaviour of $UO_2$, $ThO_2$ and $(U_{0.2}Th_{0.8})O_2$ doped with fission product oxides, J. Nucl. Mater. 185 (1991) 308-310. https://doi.org/10.1016/0022-3115(91)90521-8
  12. A.K. Tyagi, M.D. Mathews, Thermal expansion of $ThO_2$-2 wt% $UO_2$ by HT-XRD, J. Nucl. Mater. 278 (2000) 123-125. https://doi.org/10.1016/S0022-3115(99)00277-9
  13. S. Anthonysamy, J. Joseph, P.R. Vasudeva Rao, Calorimetric studies on uraniaethoria solid solutions, J. Alloys Compd. 299 (2000) 112-117. https://doi.org/10.1016/S0925-8388(99)00744-6
  14. R.K. Bhagat, K. Krishnan, T.R.G. Kutty, A. Kumar, H.S. Kamath, S. Banerjee, Thermal expansion of simulated thoriaeurania fuel by high temperature XRD, J. Nucl. Mater. 422 (2012) 152-157. https://doi.org/10.1016/j.jnucmat.2011.12.033
  15. J. Banerjee, S.C. Parida, T.R.G. Kutty, A. Kumar, S. Banerjee, Specific heats of thoriaeurania solid solutions, J. Nucl. Mater. 427 (2012) 69-78. https://doi.org/10.1016/j.jnucmat.2012.04.018
  16. H. Muta, T. Kawano, M. Uno, Y. Ohishi, K. Kurosaki, S. Yamanaka, Lattice parameter and thermal conductivity of $Th_{1-x}M_xO_{2-y}$ (M=Y, La, Ce, Nd, Gd and U), J. Nucl. Mater. 434 (2013) 124-128. https://doi.org/10.1016/j.jnucmat.2012.10.044
  17. T. Arima, K. Yoshida, T. Matsumoto, Y. Inagaki, K. Idemitsu, Thermal conductivities of $ThO_2$, $NpO_2$ and their related oxides: molecular dynamics study, J. Nucl. Mater. 445 (2014) 175-180. https://doi.org/10.1016/j.jnucmat.2013.11.006
  18. D. Hudry, J.-C. Griveau, C. Apostolidis, O. Walter, E. Colineau, G. Rasmussen, D. Wang, V.S.K. Chakravadhaluna, E. Courtois, C. Kubel, D. Meyer, Thorium/uranium mixed oxide nanocrystals: synthesis, structural characterization and magnetic properties, Nano Res. 7 (2014) 119-131. https://doi.org/10.1007/s12274-013-0379-6
  19. J.-J. Ma, J.-G. Dub, M.-J. Wan, G. Jiang, Molecular dynamics study on thermal properties of $ThO_2$ doped with U and Pu in high temperature range, J. Alloys Compd. 627 (2015) 476-482. https://doi.org/10.1016/j.jallcom.2014.11.223
  20. M.W.D. Cooper, S.C. Middleburgh, R.W. Grimes, Modelling the thermal conductivity of $(U_xTh_{1-x})O_2$ and $(U_xPu_{1-x})O_2$, J. Nucl. Mater. 466 (2015) 29-35. https://doi.org/10.1016/j.jnucmat.2015.07.022
  21. H. Xiao, C. Long, X. Tian, H. Chen, Effect of thorium addition on the thermophysical properties of uranium dioxide: atomistic simulations, Mater. Des. 96 (2016) 335-340. https://doi.org/10.1016/j.matdes.2016.02.019
  22. Z. Pan, Y. Li, Q. Wei, Tensile properties of nanocrystalline tantalum from molecular dynamics simulations, Acta Mater. 56 (2008) 3470-3480. https://doi.org/10.1016/j.actamat.2008.03.025
  23. J.B. Jeon, B.-J. Lee, Y.W. Chang, Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline bodycentered cubic iron, Scr. Mater. 64 (2011) 494-497. https://doi.org/10.1016/j.scriptamat.2010.11.019
  24. K. Zhou, B. Liu, Y. Yao, K. Zhong, Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics, Mater. Sci. Eng. A 615 (2014) 92-97. https://doi.org/10.1016/j.msea.2014.07.066
  25. Y. Zhang, P.C. Millett, M.R. Tonks, X.-M. Bai, S.B. Biner, Molecular dynamics simulations of intergranular fracture in $UO_2$ with nine empirical interatomic potentials, J. Nucl. Mater. 452 (2014) 296-303. https://doi.org/10.1016/j.jnucmat.2014.05.034
  26. B.T. Wang, H. Shi, W.D. Li, P. Zhang, First-principles study of ground-state properties and high pressure behavior of $ThO_2$, J. Nucl. Mater. 399 (2010) 181-188. https://doi.org/10.1016/j.jnucmat.2010.01.017
  27. R. Terki, H. Feraoun, G. Bertrand, H. Aourag, First principles calculations of structural, elastic and electronic properties of $XO_2$ (X=Zr, Hf and Th) in fluorite phase, Comput. Mater. Sci. 33 (2005) 44-52. https://doi.org/10.1016/j.commatsci.2004.12.059
  28. V. Kanchana, G. Vaitheeswaran, A. Svane, A. Delin, First-principles study of elastic properties of $CeO_2$, $ThO_2$ and $PoO_2$, J. Phys. Condens. Matter 18 (2006) 9615-9624. https://doi.org/10.1088/0953-8984/18/42/008
  29. A. Boudjemline, L. Louail, M.M. Islam, B. Diawara, Dependence of pressure on elastic, electronic and optical properties of $CeO_2$ and $ThO_2$: a first principles study, Comput. Mater. Sci. 50 (2011) 2280-2286. https://doi.org/10.1016/j.commatsci.2011.03.006
  30. T. Arima, S. Yamasaki, Y. Inagaki, K. Idemitsu, Evaluation of thermal properties of $UO_2$ and $PUO_2$ by equilibrium molecular dynamics simulations from 300 to 2000K, J. Alloys Compd. 400 (2005) 43-50. https://doi.org/10.1016/j.jallcom.2005.04.003
  31. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Deformationmechanism map for nanocrystalline metals by molecular-dynamics simulation, Nat. Mater. 1 (2002) 43-47.
  32. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19. https://doi.org/10.1006/jcph.1995.1039
  33. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A 31 (1985) 1695. https://doi.org/10.1103/PhysRevA.31.1695
  34. W.G. Hoover, Constant-pressure equations of motion, Phys. Rev. A 34 (1986) 2499. https://doi.org/10.1103/PhysRevA.34.2499
  35. H. Muta, Y. Murakami, M. Uno, K. Kurosaki, S. Yamanaka, Thermophysical properties of $Th_{1-x}U_xO_2$ pellets prepared by spark plasma sintering technique, J. Nucl. Sci. Tech. 50 (2013) 181-187. https://doi.org/10.1080/00223131.2013.757468
  36. P.M. Macedo, W. Capps, J.B. Watchman, Elastic constants of single crystal $ThO_2$ at $25^{\circ}C$, J. Am. Ceram. Soc. 47 (1964) 651. https://doi.org/10.1111/j.1151-2916.1964.tb13130.x
  37. N. Igata, K. Domoto, Fracture stress and elastic modulus of uranium dioxide including excess oxygen, J. Nucl. Mater. 45 (1972) 317-322.
  38. D.L. Hagrman, G.A. Reymann, R.E. Mason, MATPRO Version 11 (Revision 2): A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior, vol. Rev. 2 of NUREG/CR-0497, TREE-1280 Rev. 2, 1981.
  39. I.R. Shein, K.I. Shein, A.L. Ivanovskii, Elastic and electronic properties and stability of $SrThO_3,\;SrZrO_3$ and $ThO_2$ from first principles, J. Nucl. Mater. 361 (2007) 69-77. https://doi.org/10.1016/j.jnucmat.2006.11.003
  40. Y.J. Wei, H.J. Gao, An elasticeviscoplastic model of deformation in nanocrystalline metals based on coupled mechanisms in grain boundaries and grain interiors, Mater. Sci. Eng. A 478 (2008) 16-25. https://doi.org/10.1016/j.msea.2007.05.054
  41. T.G. Nieh, J.G. Wang, HallePetch relationship in nanocrystalline Ni and BeeB alloys, Intermetallics 13 (2005) 377-385. https://doi.org/10.1016/j.intermet.2004.07.029
  42. R.O. Scattergood, C.C. Koch, A modified model for Hall-Petch behavior in nanocrystalline materials, Scr. Metall. Mater. 27 (1992) 1195-2000. https://doi.org/10.1016/0956-716X(92)90598-9
  43. L. Lu, M.L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature, Science 287 (2000) 1463-1466. https://doi.org/10.1126/science.287.5457.1463
  44. M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006) 427-556. https://doi.org/10.1016/j.pmatsci.2005.08.003
  45. F. Louchet, J. Weiss, T. Richeton, Hall-Petch law revisited in terms of collective dislocation dynamics, Phys. Rev. Lett. 97 (2006) 075504. https://doi.org/10.1103/PhysRevLett.97.075504
  46. A. Evans, R. Davidge, The strength and fracture of stoichiometric polycrystalline $UO_2$, J. Nucl. Mater. 33 (1969) 249-260. https://doi.org/10.1016/0022-3115(69)90019-1
  47. R.F. Canon, J.T.A. Roberts, R.J. Beals, Deformation of $UO_2$ at high temperatures, J. Am. Ceram. Soc. 54 (1971) 105. https://doi.org/10.1111/j.1151-2916.1971.tb12230.x