DOI QR코드

DOI QR Code

Water Oxidation Mechanism for 3d Transition Metal Oxide Catalysts under Neutral Condition

  • Seo, Hongmin (Department of Materials Science and Engineering, Seoul National University) ;
  • Cho, Kang Hee (Department of Materials Science and Engineering, Seoul National University) ;
  • Ha, Heonjin (Department of Materials Science and Engineering, Seoul National University) ;
  • Park, Sunghak (Department of Materials Science and Engineering, Seoul National University) ;
  • Hong, Jung Sug (Department of Materials Science and Engineering, Seoul National University) ;
  • Jin, Kyoungsuk (Department of Materials Science and Engineering, Seoul National University) ;
  • Nam, Ki Tae (Department of Materials Science and Engineering, Seoul National University)
  • Received : 2017.01.12
  • Accepted : 2017.01.19
  • Published : 2017.01.31

Abstract

Electrochemical water splitting to produce hydrogen energy is regarded as a promising energy conversion process for its environmentally friendly nature. To improve cell efficiency, the development of efficient water oxidation catalysts is essentially demanded. For several decades, 3d transition metal oxides have been intensively investigated for their high activity, good durability and low-cost. This review covers i) recent progress on 3d transition metal oxide electrocatalysts and ii) the reaction mechanism of oxygen evolving catalysis, specifically focused on the proposed pathways for the O-O bond formation step.

Keywords

References

  1. M. Dresselhaus and I. Thomas, "Alternative Energy Technologies," Nature, 414 [6861] 332-37 (2001). https://doi.org/10.1038/35104599
  2. J. O. M. Bockris and T. N. Veziroglu, "Estimates of the Price of Hydrogen as a Medium for Wind and Solar Sources," Int. J. Hydrogen Energy, 32 [12] 1605-10 (2007). https://doi.org/10.1016/j.ijhydene.2007.04.037
  3. I. C. Man, H. Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martinez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Norskov, and J. Rossmeisl, "Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces," ChemCatChem, 3 [7] 1159-65 (2011). https://doi.org/10.1002/cctc.201000397
  4. H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, and P. Strasser, "The Mechanism of Water Oxidation: from Electrolysis via Homogeneous to Biological Catalysis," Chem- CatChem, 2 [7] 724-61 (2010).
  5. C. C. McCrory, S. Jung, J. C. Peters, and T. F. Jaramillo "Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction," J. Am. Chem. Soc., 135 [45] 16977-87 (2013). https://doi.org/10.1021/ja407115p
  6. L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, and L. Sun, "A Molecular Ruthenium Catalyst with Water-Oxidation Activity Comparable to that of Photosystem II," Nat. Chem., 4 [5] 418-23 (2012). https://doi.org/10.1038/nchem.1301
  7. M. Yagi, E. Tomita, S. Sakita, T. Kuwabara, and K. Nagai, "Self-Assembly of Active $IrO_2$ Colloid Catalyst on an ITO Electrode for Efficient Electrochemical Water Oxidation," J. Phys. Chem. B, 109 [46] 21489-91 (2005). https://doi.org/10.1021/jp0550208
  8. R. D. Smith, B. Sporinova, R. D. Fagan, S. Trudel, and C. P. Berlinguette, "Facile Photochemical Preparation of Amorphous Iridium Oxide Films for Water Oxidation Catalysis," Chem. Mater., 26 [4] 1654-59 (2014). https://doi.org/10.1021/cm4041715
  9. A. Indra, P. W. Menezes, I. Zaharieva, E. Baktash, J. Pfrommer, M. Schwarze, H. Dau, and M. Driess, "Active Mixed-Valent MnOx Water Oxidation Catalysts through Partial Oxidation (Corrosion) of Nanostructured MnO Particles," Angew. Chem., Int. Ed., 52 [50] 13206-10 (2013). https://doi.org/10.1002/anie.201307543
  10. I. Zaharieva, P. Chernev, M. Risch, K. Klingan, M. Kohlhoff, A. Fischer, and H. Dau, "Electrosynthesis, Functional, and Structural Characterization of a Water-Oxidizing Manganese Oxide," Energy Environ. Sci., 5 [5] 7081-89 (2012). https://doi.org/10.1039/c2ee21191b
  11. M. Huynh, C. Shi, S. J. Billinge, and D. G. Nocera, "Nature of Activated Manganese Oxide for Oxygen Evolution," J. Am. Chem. Soc., 137 [47] 14887-904 (2015). https://doi.org/10.1021/jacs.5b06382
  12. C.-H. Kuo, I. M. Mosa, A. S. Poyraz, S. Biswas, A. M. El- Sawy, W. Song, Z. Luo, S.-Y. Chen, J. F. Rusling, and J. He, "Robust Mesoporous Manganese Oxide Catalysts for Water Oxidation," ACS Catal., 5 [3] 1693-99 (2015). https://doi.org/10.1021/cs501739e
  13. T. Takashima, K. Hashimoto, and R. Nakamura, "Mechanisms of pH-Dependent Activity for Water Oxidation to Molecular Oxygen by $MnO_2$ Electrocatalysts," J. Am. Chem. Soc., 134 [3] 1519-27 (2012). https://doi.org/10.1021/ja206511w
  14. T. Takashima, K. Hashimoto, and R. Nakamura, "Inhibition of Charge Disproportionation of $MnO_2$ Electrocatalysts for Efficient Water Oxidation under Neutral Conditions," J. Am. Chem. Soc., 134 [44] 18153-56 (2012). https://doi.org/10.1021/ja306499n
  15. K. Jin, J. Park, J. Lee, K. D. Yang, G. K. Pradhan, U. Sim, D. Jeong, H. L. Jang, S. Park, D. Kim, and K. T. Nam, "Hydrated Manganese (II) Phosphate ($Mn_3(PO_4)_2{\cdot}3H_2O$) as a Water Oxidation Catalyst," J. Am. Chem. Soc., 136 [20] 7435-43 (2014). https://doi.org/10.1021/ja5026529
  16. J. Park, H. Kim, K. Jin, B. J. Lee, Y.-S. Park, H. Kim, I. Park, K. D. Yang, H.-Y. Jeong, and J. Kim, "A New Water Oxidation Catalyst: Lithium Manganese Pyrophosphate with Tunable Mn Valency," J. Am. Chem. Soc., 136 [11] 4201-11 (2014). https://doi.org/10.1021/ja410223j
  17. K. Jin, A. Chu, J. Park, D. Jeong, S. E. Jerng, U. Sim, H.-Y. Jeong, C. W. Lee, Y.-S. Park, K. D. Yang, and K. T. Nam "Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis," Sci. Rep., 5 [10279] (2015).
  18. D. Jeong, K. Jin, S. E. Jerng, H. Seo, D. Kim, S. H. Nahm, S. H. Kim, and K. T. Nam, "$Mn_5O_8$ Nanoparticles as Efficient Water Oxidation Catalysts at Neutral pH," ACS Catal., 5 [8] 4624-28 (2015). https://doi.org/10.1021/acscatal.5b01269
  19. M. W. Kanan and D. G. Nocera, "In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and $Co^{2+}$," Science, 321[5892] 1072-75 (2008). https://doi.org/10.1126/science.1162018
  20. H. Kim, J. Park, I. Park, K. Jin, S. E. Jerng, S. H. Kim, K. T. Nam, and K. Kang, "Coordination Tuning of Cobalt Phosphates towards Efficient Water Oxidation Catalyst," Nat. Commun., 6 8253 (2015). https://doi.org/10.1038/ncomms9253
  21. M. Bajdich, M. Garcia-Mota, A. Vojvodic, J. K. Norskov, and A. T. Bell, "Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water," J. Am. Chem. Soc., 135 [36] 13521-30 (2013). https://doi.org/10.1021/ja405997s
  22. J. B. Gerken, J. G. McAlpin, J. Y. Chen, M. L. Rigsby, W. H. Casey, R. D. Britt, and S. S. Stahl, "Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0-14: the Thermodynamic Basis for Catalyst Structure, Stability, and Activity," J. Am. Chem. Soc., 133 [36] 14431- 42 (2011). https://doi.org/10.1021/ja205647m
  23. M. Grzelczak, J. Zhang, J. Pfrommer, J. Hartmann, M. Driess, M. Antonietti, and X. Wang, "Electro-and Photochemical Water Oxidation on Ligand-Free $Co_3O_4$ Nanoparticles with Tunable Sizes," ACS Catal., 3 [3] 383-88 (2013). https://doi.org/10.1021/cs3007523
  24. J. D. Blakemore, H. B. Gray, J. R. Winkler, and A. M. Muller, "$Co_3O_4$ Nanoparticle Water-Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids," ACS Catal., 3 [11] 2497-500 (2013). https://doi.org/10.1021/cs400639b
  25. F. Jiao and H. Frei, "Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts," Angew. Chem., 121 [10] 1873-76 (2009). https://doi.org/10.1002/ange.200805534
  26. C. A. Kent, J. J. Concepcion, C. J. Dares, D. A. Torelli, A. J. Rieth, A. S. Miller, P. G. Hoertz, and T. J. Meyer, "Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine- Doped Tin Oxide Electrodes," J. Am. Chem. Soc., 135 [23] 8432-35 (2013). https://doi.org/10.1021/ja400616a
  27. H. Bode, K. Dehmelt, and J. Witte, "Zur Kenntnis der Nickelhydroxidelektrode- I. Uber das Nickel (II)-Hydroxidhydrat," Electrochim. Acta, 11 [8] 1079IN1-87 (1966). https://doi.org/10.1016/0013-4686(66)80045-2
  28. K. Juodkazis, J. Juodkazyt , R. Vilkauskaite, B. ebeka, and V. Jasulaitiene, "Oxygen Evolution on Composite Ruthenium and Nickel Oxides Electrode," Chemija, 19 [1] 1-6 (2008).
  29. K. Juodkazis, J. Juodkazyte, R. Vilkauskaite, and V. Jasulaitiene, "Nickel Surface Anodic Oxidation and Electrocaetalysis of Oxygen Evolution," J. Solid State Electrochem., 12 [11] 1469-79 (2008). https://doi.org/10.1007/s10008-007-0484-0
  30. M. Dinca, Y. Surendranath, and D. G. Nocera, "Nickel- Borate Oxygen-Evolving Catalyst that Functions under Benign Conditions," Proc. Natl. Acad. Sci., 107 [23] 10337- 41 (2010). https://doi.org/10.1073/pnas.1001859107
  31. D. K. Bediako, Y. Surendranath, and D. G. Nocera, "Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel-Borate Thin Film Electrocatalyst," J. Am. Chem. Soc., 135 [9] 3662-74 (2013). https://doi.org/10.1021/ja3126432
  32. M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V. K. Praneeth, M. Yoshida, K. Yoneda, and S. Kawata, "A pentanuclear Iron Catalyst Designed for Water Oxidation," Nature, 530 465-68 (2016). https://doi.org/10.1038/nature16529
  33. M.-T. Zhang, Z. Chen, P. Kang, and T. J. Meyer, "Electrocatalytic Water Oxidation with a Copper (II) Polypeptide Complex," J. Am. Chem. Soc., 135 [6] 2048-51 (2013). https://doi.org/10.1021/ja3097515
  34. K. Takada, K. Fukuda, M. Osada, I. Nakai, F. Izumi, R. A. Dilanian, K. Kato, M. Takata, H. Sakurai, E. T.-Muromachi, and T. Sasaki, "Chemical Composition and Crystal Structure of Superconducting Sodium Cobalt Oxide Bilayer-Hydrate," J. Mater. Chem., 14 [9] 1448-53 (2004). https://doi.org/10.1039/b400181h
  35. T. Motohashi, Y. Katsumata, T. Ono, R. Kanno, M. Karppinen, and H. Yamauchi, "Synthesis and Properties of $CoO_2$, the x = 0 End Member of the $Li_xCoO_2$and $Na_xCoO_2$ Systems," Chem. Mater., 19 [21] 5063-66 (2007). https://doi.org/10.1021/cm0702464
  36. J. K. Norskov, T. Bligaard, A. Logadottir, S. Bahn, L. B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, and C. J. H. Jacobsen, "Universality in Heterogeneous Catalysis," J. Catal., 209 [2] 275-78 (2002). https://doi.org/10.1006/jcat.2002.3615
  37. M. Huynh, D. K. Bediako, and D. G. Nocera, "A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid," J. Am. Chem. Soc., 136 [16] 6002-10 (2014). https://doi.org/10.1021/ja413147e
  38. M. Zhang, M. de Respinis, and H. Frei, "Time-Resolved Observations of Water Oxidation Intermediates on a Cobalt Oxide Nanoparticle Catalyst," Nat. Chem., 6 362-67 (2014). https://doi.org/10.1038/nchem.1874
  39. M. M. Najafpour and M. A. Isaloo, "Mechanism of Water Oxidation by Nanolayered Manganese Oxide: A Step Forward," RSC Advances, 4 [13] 6375-78 (2014). https://doi.org/10.1039/C3RA46925E
  40. L.-P. Wang and T. V. Voorhis, "Direct-Coupling $O_2$ Bond Forming a Pathway in Cobalt Oxide Water Oxidation Catalysts," J. Phys. Chem. Lett., 2 [17] 2200-4 (2011). https://doi.org/10.1021/jz201021n

Cited by

  1. Involvement of high-valent manganese-oxo intermediates in oxidation reactions: realisation in nature, nano and molecular systems vol.5, pp.1, 2018, https://doi.org/10.1186/s40580-018-0150-5
  2. oxygen evolution catalysts vol.115, pp.23, 2018, https://doi.org/10.1073/pnas.1722235115
  3. Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode vol.55, pp.3, 2018, https://doi.org/10.4191/kcers.2018.55.3.11
  4. a thermal approach for effective water splitting vol.9, pp.4, 2019, https://doi.org/10.1039/C8CY02318B
  5. and S, N-doped graphene for ternary heterostructures vol.48, pp.6, 2019, https://doi.org/10.1039/C8DT04656E
  6. Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH pp.16136810, 2019, https://doi.org/10.1002/smll.201805103
  7. Thickness-Dependent Properties of Undoped and Mn-doped (001) PMN-29PT [Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals vol.55, pp.3, 2018, https://doi.org/10.4191/kcers.2018.55.3.07
  8. 배터리 소재를 이용한 전이금속 화합물 기반 물 분해 촉매 개발 vol.21, pp.4, 2017, https://doi.org/10.31613/ceramist.2018.21.4.09
  9. Importance of Entropic Contribution to Electrochemical Water Oxidation Catalysis vol.4, pp.None, 2017, https://doi.org/10.1021/acsenergylett.9b00541
  10. Light-induced water oxidation by polymorphs of the Zn-Co-Ni oxide spinel catalyst: a comparative study vol.3, pp.3, 2017, https://doi.org/10.1039/c8se00536b
  11. Methylamine Treated Mn3O4Nanoparticles as a Highly Efficient Water Oxidation Catalyst under Neutral Condition vol.11, pp.6, 2017, https://doi.org/10.1002/cctc.201900055
  12. Highly Selective Active Chlorine Generation Electrocatalyzed by Co3O4 Nanoparticles: Mechanistic Investigation through in Situ Electrokinetic and Spectroscopic Analyses vol.10, pp.6, 2017, https://doi.org/10.1021/acs.jpclett.9b00547
  13. Artificial photosynthesis: opportunities and challenges of molecular catalysts vol.48, pp.7, 2017, https://doi.org/10.1039/c8cs00897c
  14. Structural Monitoring of NiBi Modified BiVO4 Photoanodes Using in Situ Soft and Hard X-ray Absorption Spectroscopies vol.2, pp.6, 2017, https://doi.org/10.1021/acsaem.9b00304