DOI QR코드

DOI QR Code

Novel Synthesis and Characterization of Pt-graphene/TiO2 Composite Designed for High Photonic Effect and Photocatalytic Activity under Visible Light

  • Ye, Shu (Department of Advanced Materials Science and Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science and Engineering, Hanseo University)
  • Received : 2016.06.19
  • Accepted : 2016.12.01
  • Published : 2017.01.31

Abstract

The degradation of methyl blue (MB) catalyzed by platinum (Pt)-graphene/$TiO_2$ in dark ambiance was studied. Pt-graphene/$TiO_2$ composites were prepared by simple hydrothermal method. Characterizations of composites were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) analysis, and energy dispersive X-ray (EDX) analysis. UV-spectroscopic analysis of the dyes was performed by measuring the change in absorbance. The degradation of the organic dyes was calculated based on the decrease in concentration of the dyes with respect to regular time intervals. Rate coefficients for the catalytic process were successfully established and reusability tests were performed to test the stability of the used catalysts.

Keywords

References

  1. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, "Towards Wafer-Size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide," Nat. Mater., 8 [3] 203-7 (2009). https://doi.org/10.1038/nmat2382
  2. H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie, and W.-J. Zhang, "Controllable Synthesis of Submillimeter Single- Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation," J. Am. Chem. Soc., 134 [8] 3627-30 (2012). https://doi.org/10.1021/ja2105976
  3. J. P. hao, S. P. Pei, W. C. Ren, L. B. Gao, and H. M. Cheng, "Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films," ACS Nano, 4 [9] 5245-52 (2010). https://doi.org/10.1021/nn1015506
  4. A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski, and A. A. Bol, "Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes," ACS Nano, 4 [7] 3839-44 (2010). https://doi.org/10.1021/nn100508g
  5. L. G. Arco, Y. Zhang, C. W. Schlenker, K. M. Ryu, M. E. Thompson, and C. W. Zhou, "Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organicphotovoltaics," ACS Nano, 4 [5] 2865-73 (2010). https://doi.org/10.1021/nn901587x
  6. X. Wang, L. J. Zhi, N. Tsao, Z. Tomovic, J. L. Li, and K. Mullen, "Transparent Carbon Films as Electrodes in Organic Solar Cells," Angew. Chem., 120 [16] 3032-34 (2008). https://doi.org/10.1002/ange.200704909
  7. X. Y. Qi, K. Y. Pu, H. Li, X. Z. Zhou, S. X. Wu, Q. L. Fan, and B. Liu, "Amphiphilic Graphene Composites," Angew. Chem., Int. Ed., 49 [49] 9426-29 (2010). https://doi.org/10.1002/anie.201004497
  8. P. Sutter, "Epitaxial Graphene: How Silicon Leaves the Scene," Nat. Mater., 8 [3] 171-72 (2009) . https://doi.org/10.1038/nmat2392
  9. W. Poirier and F. Schopfer, "Can Graphene Set New Standards," Nat. Nanotechnol., 5 [3] 171-72 (2010). https://doi.org/10.1038/nnano.2010.40
  10. P. Maher, L. Wang, Y. Gao, C. Forsythe, T. Taniguchi, K. Watanabe, D. Abanin, Z. Papic, P. Cadden-Zimansky, J. Hone, P. Kim, and C. R. Dean, "Tunable Fractional Quantum Hall Phases in Bilayer Graphene," Science, 345 [6192] 61-4 (2014). https://doi.org/10.1126/science.1252875
  11. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large- Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes," Nature, 457 [7230] 706-10 (2009). https://doi.org/10.1038/nature07719
  12. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff "Large-Area Synthesis of High- Quality and Uniform Graphene Films on Copper Foils," Science, 324 [5932] 1310-14 (2009).
  13. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, and H.-M. Cheng, "Repeated Growth and Bubbling Transfer of Graphene with Millimeter Size Single-Crystal Grains Using Platinum," Nat. Commun., 3 699 (2012). https://doi.org/10.1038/ncomms1702
  14. P. W. Sutter, J. I. Flege, and E. A. Sutter, "Epitaxial Graphene on Ruthenium," Nat. Mater., 7 [5] 406-11 (2008). https://doi.org/10.1038/nmat2166
  15. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene Segregated on Ni Surfaces and Transferred to Insulators," Appl. Phys. Lett., 93 [11] 113103 (2008). https://doi.org/10.1063/1.2982585
  16. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large- Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes," Nature, 457 [7230] 706-10 (2009). https://doi.org/10.1038/nature07719
  17. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Lett., 9 [1] 30-5 (2009). https://doi.org/10.1021/nl801827v
  18. H. L. Wang, L. F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Liang, Y. Cui, and H. Dai, "$Mn_3O_4$-Graphene Hybrid as a High-Capacity Anode Materials for Lithium Ion Batteries," J. Am. Chem. Soc., 132 [40] 13978-80 (2010). https://doi.org/10.1021/ja105296a
  19. P. K. Ang, W. Chen, A. T. S. Wee, and K. P. Loh, "Solution- Gated Epitaxial Graphene as pH Sensor," J. Am. Chem. Soc., 130 [44] 14392-93 (2008). https://doi.org/10.1021/ja805090z
  20. S. F. Hou, M. L. Kasner, S. J. Su, K. Patel, and R. Cuellari, "Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene," J. Phys. Chem. C, 114 [35] 14915-21 (2010). https://doi.org/10.1021/jp1020593
  21. S. Liu, M.-Q. Yang, and Y.-J. Xu, "Surface Charge Promotes the Synthesis of Large, Flat Structured Graphene- (CdS Nanowire)-$TiO_2$ Nanocomposites as Versatile Visible Light Photocatalysts," J. Mater. Chem. A, 2 430-40 (2014). https://doi.org/10.1039/C3TA13892E
  22. J. Aguado, R. Van Grieken, M. J. Lopez-Munos, and J. Marugan, "A Comprehensive Study of the Synthesis, Characterization and Activity of $TiO_2$ and Mixed $TiO_2$/$SiO_2$ Photocatalysts," Appl. Catal., A, 312 202-12 (2006). https://doi.org/10.1016/j.apcata.2006.07.003
  23. J. Coraux, A. T. N. Diaye, C. Busse, and T. Michely, "Structural Coherency of Graphene on Ir (111)," Nano Lett., 8 [2] 565-70 (2008). https://doi.org/10.1021/nl0728874
  24. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Electronic Confinement and Coherence in Patterned Epitaxial Graphene," Science, 312 [5777] 1191-96 (2006) https://doi.org/10.1126/science.1125925
  25. K. A. Ritter and J. W. Lyding, "The Influence of Edge Structure on the Electronic Properties of Graphene Quantum Dots and Nanoribbons," Nat. Mater., 8 [3] 235-42 (2009). https://doi.org/10.1038/nmat2378
  26. C. Tao, L. Jiao, O. V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, S. G. Louie, H. Dai, and M. F. Crommie, "Spatially Resolving Edge States of Chiral Graphene Nanoribbons," Nat. Phys., 7 616-20 (2011). https://doi.org/10.1038/nphys1991
  27. M. Pan, E. C. Girão, X. Jia, S. Bhaviripudi, Q. Li, J. Kong, V. Meunier, and M. S. Dresselhaus, "Topographic and Spectroscopic Characterization of Electronic Edge States in CVD Grown Graphene Nanoribbons," Nano Lett., 12 [4] 1928-33 (2012). https://doi.org/10.1021/nl204392s
  28. X. Zhang, O. V. Yazyev, J. Feng, L. G. Xie, C. G. Tao, Y.-C. Chen, L. Jiao, Z. Pedramrazi, A. Zettl, S. G. Louie, H. Dai, and M. F. Crommie, "Experimentally Engineering the Edge Termination of Graphene Nanoribbons," ACS Nano, 7 [1] 198-202 (2013). https://doi.org/10.1021/nn303730v
  29. A. C. Ferrari and D. M. Basko, "Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene," Nat. Nanotechnol., 8 [4] 235-46 (2013). https://doi.org/10.1038/nnano.2013.46
  30. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman Spectrum of Graphene and Graphene Layers," Phys. Rev. Lett., 97 [18] 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
  31. K. Ullah, S. Ye, S.-G. Kim, B.-J. Lee, E.-H.Yoon, Y.-R. Kim, B.-S. Kim, and W-C. Oh, "Additional Materials Effect for Improved Electrochemical Performance of Active Carbon Fiber based Electric Double Layer Capacitors," Asian J. Chem., 27 [6] 2260-66 (2015). https://doi.org/10.14233/ajchem.2015.18721
  32. K. Uallah, A. Ali, S. Ye, L. Zhu, I.-J. Kim, S.-H. Yang, and W.-C. Oh, "Electrochemical Performance of Graphene/Active Carbon based Electric Double Supercapacitor," Asian J. Chem., 28 [1] 133-37 (2016). https://doi.org/10.14233/ajchem.2016.19278
  33. L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil, and K. S. Novoselov, "Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite," Adv. Mater., 22 [24] 2694-97 (2010). https://doi.org/10.1002/adma.200904264
  34. V. Panchal, L. Manzin, Y. Tzalenchuk, and O. Kazakova, "Visualisation of Edge Effects in Side-Gated Graphene Nanodevices," Sci. Rep., 4 5881 (2014).

Cited by

  1. Gold nanoislands chip for laser desorption/ionization (LDI) mass spectrometry vol.11, pp.3, 2017, https://doi.org/10.1007/s13206-017-1310-0
  2. photoemission spectroscopy with Ar gas cluster ion beam sputtering vol.20, pp.1, 2018, https://doi.org/10.1039/C7CP06450K
  3. nanocluster/nanorod films for photoactive applications vol.47, pp.21, 2018, https://doi.org/10.1039/C8DT01348A
  4. Recent progress of metal–graphene nanostructures in photocatalysis vol.10, pp.20, 2018, https://doi.org/10.1039/C8NR03500H
  5. and S, N-doped graphene for ternary heterostructures vol.48, pp.6, 2019, https://doi.org/10.1039/C8DT04656E