DOI QR코드

DOI QR Code

원심압축기 밀폐형 임펠러 형상에 따른 성능특성 파악을 위한 유동해석

Flow Analysis for Performance Characteristics with Closed Type Impeller Shapes of a Centrifugal Compressor

  • Cho, Jongjae (Thermal Energy System Laboratory, Korea Institute of Energy Research) ;
  • Yoon, YongSang (Power Systems Division, Engine Development Center, Hanwha Techwin) ;
  • Cho, MyungHwan (Power Systems Division, Engine Development Center, Hanwha Techwin) ;
  • Kang, SukChul (Power Systems Division, Engine Development Center, Hanwha Techwin)
  • 투고 : 2016.05.19
  • 심사 : 2016.12.26
  • 발행 : 2017.02.01

초록

원심압축기 운전 중에 발생하는 고주기 피로균열이나 공진 등은 임펠러 파손의 주된 원인이다. 이러한 파손을 회피하기 위해 공진영역 운전에서도 견딜 수 있는 충분한 강도의 임펠러를 설계하거나, 공진이 발생하지 않도록 임펠러를 튜닝 한다. 이러한 회피설계는 임펠러 내부유동 및 성능특성 변화를 야기하게 된다. 본 연구에서는 밀폐형 임펠러에 대해 블레이드 두께를 증가시킨 모델과 스켈럽을 적용한 모델에 대한 유동 및 성능특성을 파악하기 위해 전산해석을 수행하였다. 전산해석 결과, 블레이드 두께 증가 모델 경우는 기본모델 대비 압력계수가 0.5% 감소하였으며, 전효율은 0.1% 감소하였다. 스켈럽 적용모델은 압력계수가 0.4% 증가하였으며, 전효율은 1.6% 감소하였다.

The high-cycle fatigue cracking and the resonance generated in operation of a centrifugal compressor are main cause of the impeller damage. In order to prevent the damage, the impeller is designed or modified to have sufficient strength to withstand the operating condition. The damage prevent design will lead to a change of the flow condition and the performance characteristics of the compressor. In this study, the computational analysis were performed to identify the flow and the performance characteristics. The cases are a scalloped and a increased the blade thickness models with a closed type impeller. As the analysis results, the value of head coefficient and total to total efficiency for the increased the blade thickness model was decreased by each 0.5% and 0.1% than the values of the baseline model. Each value for the scalloped model was increased by 0.4% and was decreased by 1.6%.

키워드

참고문헌

  1. Ortolano, R.J., La Rosa, J.A. and Welch, W. P., "Long Are Shrouding - A Reliability Improvement for Untuned Steam Turbine Blading," Transactions of the ASME, Journal of Engineering for Power, Vol. 103 No. 3, pp. 522-527, 1981. https://doi.org/10.1115/1.3230753
  2. Skoch, G.J. and Moore, R.D., "Performance of Two 10-lb/sec Centrifugal Compressors With Different Blade and Shroud Thicknesses Operating Over a Rage of Reynolds Numbers," NASA Technical Memorandum, Technical Report 87-C-21, 1987.
  3. Hiett, G.F. and Johnston, I.H., "Experiments Concerning the Aerodynamic Performance of Inward Flow Radial Turbines," Proceedings, Inst. of Mechanical Engineers, 178, part 3I, pp. 28-42, 1963. https://doi.org/10.1177/002034836317800103
  4. Konig, S., Petry, N. and Wagner, N.G., "Aeroacoustics Phenomena in High Pressure Centrifugal Compressors - A Possible Root Cause for Impeller Failures," Proceedings of the Thirty-Eighth Turbomachinery Symposium, T.X., U.S.A., pp. 103-122, 2009.
  5. WEIR Power industrial, Case Study : Natural gas compressor re-rate in South East Asia, 2012.
  6. ANSYS, Inc., ANSYS CFX User Guide, Version 14.5., 2013.
  7. Menter, F.R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, No. 8, pp. 1598-1605, 1994. https://doi.org/10.2514/3.12149
  8. Eckardt, D. and Menter, F.R., "Two-Equation Eddy Viscosity Turbulence Models for Eng- ineering Applications," AIAA Journal, Vol. 32, No. 8, pp. 1598-1605, 1994. https://doi.org/10.2514/3.12149