DOI QR코드

DOI QR Code

베이지안 칼만 필터 기법의 훈련 기간에 따른 풍력 자원 예측 정확도 향상성 연구

A Study of Improvement of a Prediction Accuracy about Wind Resources based on Training Period of Bayesian Kalman Filter Technique

  • 이순환 (부산대학교 지구과학교육과)
  • Lee, Soon-Hwan (Department of Earth Science Education, Pusan National University)
  • 투고 : 2016.01.02
  • 심사 : 2017.02.09
  • 발행 : 2017.02.28

초록

풍력 자원의 단기 예측 가능성은 풍력 발전 단지의 경제적 타당성을 평가하는 중요한 요소이다. 본 연구에서는 풍력 자원의 단기 예측 가능성을 향상시키는 방법의 하나로 베이지안 칼만 필터를 후처리 과정으로 적용하였다. 이때 추정된 모델과 관측 데이터의 상관관계를 평가하기 위하여 일정 시간 동안 베이지안 칼만 훈련 기간이 요구된다. 본 연구는 여러 훈련 기간에 따라 예측 특성을 정량적으로 분석하였다. 태백 지역에서는 3일 단기 베이지안 칼만 훈련으로 기온과 풍속을 예측하는 것이 다른 훈련 기간을 적용할 때보다 우수한 예측 성능을 보였다. 반면 이어도는 6일 이상의 베이지안 칼만 필터의 훈련 기간을 적용한 경우 가장 좋은 예측 성능을 나타낸다. WRF 예측 성능이 떨어지는 사례에서 베이지안 칼만 필터의 예측 성능향상이 뚜렷하게 나타나며, 반대로 WRF 예측이 정확한 지점에서는 필터적용에 따른 성능향상 정도가 약한 경향을 가진다.

The short term predictability of wind resources is an important factor in evaluating the economic feasibility of a wind power plant. As a method of improving the predictability, a Bayesian Kalman filter is applied as the model data postprocessing. At this time, a statistical training period is needed to evaluate the correlation between estimated model and observation data for several Kalman training periods. This study was quantitatively analyzes for the prediction characteristics according to different training periods. The prediction of the temperature and wind speed with 3-day short term Bayesian Kalman training at Taebaek area is more reasonable than that in applying the other training periods. In contrast, it may produce a good prediction result in Ieodo when applying the training period for more than six days. The prediction performance of a Bayesian Kalman filter is clearly improved in the case in which the Weather Research Forecast (WRF) model prediction performance is poor. On the other hand, the performance improvement of the WRF prediction is weak at the accurate point.

키워드

참고문헌

  1. Accadia, C., Zecchetto, S., Lavagnini, A., and Speranza A., 2007, Comparison of 10-m wind forecasts from a regional area model and QuikSCAT scatterometer wind observations over the Mediterranean Sea. Monthly Weather Review, 135, 1945-1960. https://doi.org/10.1175/MWR3370.1
  2. Cassola, F. and Burlando, M., 2012, Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Applied Energy, 99, 154-166. https://doi.org/10.1016/j.apenergy.2012.03.054
  3. Cheruy, F., Speranza, A., Sutera, A., and Tartaglione, N., 2004, Surface winds in the Euro-Mediterranean area: the real resolution of numerical grids. Annales Geophysicae, 22, 4043-4048. https://doi.org/10.5194/angeo-22-4043-2004
  4. Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., and Drax, C., 2011, The State-Of-The-Art in Short-Term Prediction of Wind Power: A literature overview, 2nd ed., Project report for the Anemos. plus and Safe Wind projects, Riso, Roskilde, Denmark, 109 p.
  5. Kalman, R.E., 1960, A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 82, 35-45. https://doi.org/10.1115/1.3662552
  6. Kim, H.G., Lee, H.W., and Lee, S.H., 2011, Development of the Korea wind resource map and suitability assessment system for offshore wind farm. Journal of Wind Energy, 2(2), 17-23. (in Korean)
  7. Kim, H.G., Hwang, H.j., and Kang, Y.H., 2013, Evaluation of onshore wind resource potential according to environmental conservation value assessment. Journal of Environmental Science International, 22(6), 717-721. (in Korean) https://doi.org/10.5322/JESI.2013.22.6.717
  8. Kim, K.D., Choi, D.H., Sim, J., and Kim, K.C., 2011, Development and design of offshore wind turbine support structures. Korean Society of Civil Engineers Journal of Civil Engineering, 59(5), 28-37. (in Korean)
  9. Kim, Y.D., Jeong, Y.M., and Lee, D.D., 2014, Technical trend of radar radio interference reduction relating to construction of the offshore wind farm. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 27(4), 250-256. (in Korean) https://doi.org/10.4313/JKEM.2014.27.4.250
  10. Lee, S.H., Lee, H.W., Kim, D.H., Kim, M.J., and Kim, H.G., 2011, Analytic study on the variation of regional wind resources associated with the Change of El Nino/La Nina Intensity, The Journal of The Korean Earth Science Society, 32, 180-189. (in Korean) https://doi.org/10.5467/JKESS.2011.32.2.180
  11. Lee, S.H., 2012, Analysis of the impact of QuikSCAT and ASCAT sea wind data assimilation on the prediction of regional wind field near coastal Area. The Journal of The Korean Earth Science Society, 33, 309-319. (in Korean) https://doi.org/10.5467/JKESS.2012.33.4.309
  12. Lee, S.H., Park, S.Y., Lee, H.W., and Kim, D.H., 2012, Charateristics of the estimation of wind energy according to temporal resolution of wind resources map. Journal of Wind Energy, 3(2), 67-73. (in Korean)
  13. Li G., Shi J., and Zhou J., 2011, Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renewable Energy, 36, 352-359. https://doi.org/10.1016/j.renene.2010.06.049
  14. Louka, P., Galanis, G., Siebert, N., Kariniotakis, G., Katsafados, P., Pytharoulis, I., and Kallos, G., 2008, Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics, 96(12), 2348-2362. https://doi.org/10.1016/j.jweia.2008.03.013
  15. Lynch, C., OMahony, M.J., and Scully, T., 2014, Simplified method to derive the Kalman filter covariance matrices to predict wind speeds from a NWP model. Energy procedia, 62, 676-685. https://doi.org/10.1016/j.egypro.2014.12.431
  16. Monfared, M., Rastegar, H., and Kojabadi, H.M., 2009, A new strategy for wind speed forecasting using artificial intelligent methods. Renewable Energy, 34, 845-848. https://doi.org/10.1016/j.renene.2008.04.017
  17. Yoo, J.W., Lee, H.W., Lee, S.H., and Kim, D.H., 2012, Characteristics of vertical variation of wind resources in planetary boundary layer in coastal area using tall tower observation. Journal of Korean Society for Atmospheric Environment, 28(6), 632-643. (in Korean) https://doi.org/10.5572/KOSAE.2012.28.6.632
  18. Yoo, J.W., Lee, S.H., and Lee, H.W., 2014, Numerical study on the characteristics of TKE in coastal area for offshore wind power. Journal of Environmental Science International, 23(9), 1551-1562. (in Korean) https://doi.org/10.5322/JESI.2014.23.9.1551
  19. West, M. and Harrison, J., 1997, Bayesian forecasting and dynamic models (second edition). Springer-Verlag, New York, USA, 680 p.