DOI QR코드

DOI QR Code

Peptide Analysis and the Bioactivity of Whey Protein Hydrolysates from Cheese Whey with Several Enzymes

  • Jeewanthi, Renda Kankanamge Chaturika (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Kim, Myeong Hee (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Lee, Na-Kyoung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Yoon, Yoh Chang (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Paik, Hyun-Dong (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • Received : 2016.08.16
  • Accepted : 2016.12.31
  • Published : 2017.02.28

Abstract

The aim of this study was identifying a suitable food grade enzymes to hydrolyze whey protein concentrates (WPCs), to give the highest bioactivity. WPCs from ultrafiltration retentate were adjusted to 35% protein (WPC-35) and hydrolyzed by enzymes, alcalase, ${\alpha}-chymotrypsin$, pepsin, protease M, protease S, and trypsin at different hydrolysis times (0, 0.5, 1, 2, 3, 4, and 5 h). These 36 types of hydrolysates were analyzed for their prominent peptides ${\beta}-lactoglobulin$ (${\beta}-Lg$) and ${\alpha}-lactalbumin$ (${\alpha}-La$), to identify the proteolytic activity of each enzyme. Protease S showed the highest proteolytic activity and angiotensin converting enzyme inhibitory activity of IC50, 0.099 mg/mL (91.55%) while trypsin showed the weakest effect. Antihypertensive and antioxidative peptides associated with ${\beta}-Lg$ hydrolysates were identified in WPC-35 hydrolysates (WPH-35) that hydrolyzed by the enzymes, trypsin and protease S. WPH-35 treated with protease S in 0.5 h, responded positively to usage as a bioactive component in different applications of pharmaceutical or related industries.

Keywords

References

  1. AOAC. (2000) Official Methods of Analysis. 17th ed, Association of Official Analytical Chemists, Gaithersburg, MD, USA, Chapter 33, pp. 4-53.
  2. Barros, R. M., Ferreira, C. A., Silva, S. V., and Malcata, F. X. (2001) Quantitative studies on the enzymatic hydrolysis of milk proteins brought about by cardosins precipitated by ammonium sulfate. Enzyme Microb. Tech. 29, 541-547. https://doi.org/10.1016/S0141-0229(01)00431-8
  3. Conway, V., Gauthier, S. F., and Pouliot, Y. (2013) Antioxidant activities of buttermilk proteins, whey proteins, and their enzymatic hydrolysates. J. Agric. Food Chem. 61, 364-372. https://doi.org/10.1021/jf304309g
  4. Custodio, M. F., Goulart, A. J., Marques, D. P., Giordano, R. C., Giordano, R. L. C., and Monti, R. (2005) Hydrolysis of cheese whey proteins with trypsin, chymotrypsin and carboxypeptidase A. Braz. J. Food Nutr. 16, 105-109.
  5. Damodaran, S. (1996) Functional Properties. In: Food proteins, properties and characterization. Nakai, S. and Modler, H. W. (eds) VCH Publishers, New York, USA. pp. 167-234.
  6. Exposito, I. L. and Recio, I. (2006) Antibacterial activity of peptides and holding variants from milk proteins. Int. Dairy J. 16, 1294-1305. https://doi.org/10.1016/j.idairyj.2006.06.002
  7. Foegeding, E. A., Davis, J. P., Doucet, D., and Mcguffey, K. (2002) Advances in modifying and understanding whey protein functionality. Trends Food Sci. Tech. 13, 151-159. https://doi.org/10.1016/S0924-2244(02)00111-5
  8. Gauthier, S. F. and Stela, Y. P. (2003) Functional and biological properties of peptides obtained by enzymatic hydrolysis of whey proteins. J. Dairy Sci. 86, 78-87. https://doi.org/10.3168/jds.S0022-0302(03)73586-3
  9. Gerdes, S. K., Harper, W. J., and Miller, G. (2001) Bioactive components of whey and cardiovascular health. In: Application monograph cardiovascular health. U.S. Dairy Export Council, Arlington, USA. pp. VA1-VA 8.
  10. Hermansen, K. (2000) Diet, blood pressure and hypertension. Brit. J. Nutr. 83, S113-S119.
  11. Host, A. and Halken, S. (2004) Hypoallergenic formulas when, to whom and how long: After more than 15 years we know the right indication. Allergy 59, 45-52.
  12. Jayaprakasha, H. M. and Yoon, Y. C. (2005) Production of functional whey protein concentrate by monitoring the process of ultrafiltration. Asian-Aust. J. Anim. Sci. 3, 433-438.
  13. Jeewanthi, R. K. C., Lee, N. K., and Paik, H. D. (2015a) Improved functional characteristics of whey protein hydrolysates in food industry. Korean J. Food Sci. An. 35, 350-359. https://doi.org/10.5851/kosfa.2015.35.3.350
  14. Jeewanthi, R. K. C., Lee, N. K., Lee, S. K., Yoon, Y. C., and Paik, H. D. (2015b) Physicochemical characterization of hydrolysates of whey protein concentrates for their use in nutritional beverages. Food Sci. Biotechnol. 24, 1335-1340. https://doi.org/10.1007/s10068-015-0171-3
  15. Jeewanthi, R. K. C., Paik, H. D., Lee, N. K., Kim, M. H., Kim, S. Y., and Yoon, Y. C. (2014) Characteristics of whey protein hydrolysates from cheese whey, favors on various food applications. Chem. Ind. Chem. Eng. Q. 20, 503-509. https://doi.org/10.2298/CICEQ130221032J
  16. Jelen, P. (1992) Whey cheese and beverages. In: Whey and lactose processing. Zadow, J. G. (ed) Elsevier, London and New York. pp. 157-194.
  17. Korhonen, H. (2002) Technology options for new nutritional concepts. Int. J. Dairy Technol. 55, 79-88. https://doi.org/10.1046/j.1471-0307.2002.00050.x
  18. Lim, S. M., Lee, N. K., Park, K. K., Yoon, Y. C., and Paik, H. D. (2011) ACE-inhibitory effect and physicochemical characteristics of yogurt beverage with whey protein hydrolysates. Korean J. Food Sci. An. 31, 886-892. https://doi.org/10.5851/kosfa.2011.31.6.886
  19. Lopez-Fandino, R., Otte, J., and Van, C. J. (2006) Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. Int. Dairy J. 16, 1277-1293. https://doi.org/10.1016/j.idairyj.2006.06.004
  20. Luhovyy, B. L., Akhavan, T., and Anderson, G. H. (2007) Whey proteins in the regulation of food intake and safety. J. Am. Coll. Nutr. 6, 704-712.
  21. Meisel, H. and Schlimme, E. (1996) Bioactive peptides derived from milk proteins: Ingredients for functional foods. Kieler Milchw. Forsch. 48, 343-357.
  22. Mullally, M. M., Meisel, H., and Fitzgerald, R. J. (1997) ACE-I inhibitory activities of gastric and pancreatic proteinase digest of whey proteins. Int. Dairy J. 7, 299-303. https://doi.org/10.1016/S0958-6946(97)00018-6
  23. Otte, J., Ju, Z. Y., Faergemand, M., Lomholt, S. B., and Qvist, K. B. (1996) Protease-induced aggregation and gelation of whey proteins. J. Food Sci. 61, 911-915. https://doi.org/10.1111/j.1365-2621.1996.tb10900.x
  24. Pihlanto-Leppala, A., Koskinen, P., Piilola, K., Tupasela, T., and Korhonen, H. (2000) ACE-I Inhibitory properties of whey protein digests: Concentration & characterization of active peptides. J. Dairy Res. 67, 53-64. https://doi.org/10.1017/S0022029999003982
  25. Pintado, M. E. and Malcata, F. X. (2000) Hydrolysis of ovine, caprine and bovine whey proteins by trypsin and pepsin. J. Bioprocess. Eng. 23, 275-282. https://doi.org/10.1007/s004499900167
  26. Pouliot, Y., Guy, M. M., Tremblay, M., Gaonac'h, A. C., Chay Pak Ting, B. P., Gauthier, S. F., and Voyer, N. (2009) Isolation and characterization of an aggregating peptide from a tryptic hydrolysate of whey proteins. J. Agr. Food Chem. 57, 3760-3764. https://doi.org/10.1021/jf803539f
  27. Schober, Y., Yoo, S. H., Paik, H. D., Park, E. J., Spengler, B., Rompp, A., Jayaprakasha, H. M., and Yoon, Y. C. (2012) Characterization of bioactive peptides derived by enzymatic hydrolysis of whey protein concentrates. Milchwissenschaft 67, 55-57.
  28. Silvestre, M. P. C., Silva, M. R., Silva, V. D. M., Souza, M. W. S., Lopes, J. R. C. O., and Afonso, W. O. (2012) Analysis of whey protein hydrolysates: Peptide profile and ACE inhibitory activity. Braz. J. Pharm. Sci. 48, 747-757. https://doi.org/10.1590/S1984-82502012000400019
  29. Spellman, D., O'cuinn, G., and Fitzgerald, R. J. (2009) Bitterness in Bacillus proteinase hydrolysates of whey proteins. Food Chem. 114, 440-446. https://doi.org/10.1016/j.foodchem.2008.09.067
  30. Tavares, T. G. and Malcata, F. X. (2013) Whey Proteins as Source of Bioactive Peptides Against Hypertension. In: Bioactive food peptides in health and diseases. Hernadez-Ledesma, B., and Hsieh, C. C. (eds), Intech, Rijeka, Croatia. pp. 75-95.
  31. Wang, L., Mao, X., Chenge, X., Xiong, X., and Ren, F. (2010) Effect of enzyme type and hydrolysis conditions on the in vitro angiotensin I-converting enzyme inhibitory activity and as content of hydrolysed whey protein isolate. Int. J. Food Sci. Tech. 45, 807-812. https://doi.org/10.1111/j.1365-2621.2010.02210.x
  32. Weigle, D. S., Breen, P. A., Matthys, C. C., Callahan, H. S., Meeuws, K. E., Burden, V. R., and Purnell, J. Q. (2005) A high-protein diet induces sustained reductions in appetite, adlibitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am. J. Clin. Nutr. 82, 41-48. https://doi.org/10.1093/ajcn/82.1.41
  33. Wu, J. and Ding, X. (2002) Characterization of inhibition and stability of soy-protein-derived ACE-I inhibitory peptides. Food Res. Int. 35, 367-375. https://doi.org/10.1016/S0963-9969(01)00131-4
  34. Yust, M. M., Pedroche, J., Girón-Calle, J., Alaiz, M., Millán, F., and Vioque, J. (2003) Production of ACE inhibitory peptides by digestion of chickpea legumin with alcalase. Food Chem. 80, 1-7. https://doi.org/10.1016/S0308-8146(02)00227-3
  35. Zambrowicz, A., Timmer, M., Polanowski, A., Lubec, G., and Trziszka, T. (2013) Manufacturing of peptides exhibiting biological activity. Amino Acids. 44, 315-320. https://doi.org/10.1007/s00726-012-1379-7
  36. Zhang, Q. X., Wu, H., Ling, Y. F., and Lu, R. R. (2013) Isolation and identification of antioxidant peptides derived from whey protein enzymatic hydrolysate by consecutive chromatography and Q-TOF MS. J. Dairy Res. 80, 367-373. https://doi.org/10.1017/S0022029913000320

Cited by

  1. Angiotensin Converting Enzyme Inhibitory and Antioxidant Activities of Enzymatic Hydrolysates of Korean Native Cattle (Hanwoo) Myofibrillar Protein vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/5274637
  2. 홍국 분말을 첨가한 유화형 소시지의 이화학 특성 연구 vol.49, pp.4, 2017, https://doi.org/10.9721/kjfst.2017.49.4.396
  3. Separation of Antioxidant Peptides from Pepsin Hydrolysate of Whey Protein Isolate by ATPS of EOPO Co-polymer (UCON)/Phosphate vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-13507-9
  4. Angiotensin‐converting enzyme inhibitory activity of hydrolysates generated from whey protein fortified with salal fruits (Galtheria shallon) by enzymatic treatment with Pronase from Streptomyce vol.54, pp.11, 2017, https://doi.org/10.1111/ijfs.14211
  5. Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: A review of recent trends vol.103, pp.None, 2020, https://doi.org/10.1016/j.tifs.2020.06.017
  6. Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications vol.87, pp.None, 2017, https://doi.org/10.1016/j.jff.2021.104760
  7. Evaluating the effect of conjugation on the bioactivities of whey protein hydrolysates vol.86, pp.12, 2017, https://doi.org/10.1111/1750-3841.15958
  8. Whey proteins and peptides in health-promoting functions – A review vol.126, pp.None, 2017, https://doi.org/10.1016/j.idairyj.2021.105269