DOI QR코드

DOI QR Code

Monitoring of Bioluminescent Lactobacillus plantarum in a Complex Food Matrix

  • Moon, Gi-Seong (Department of Biotechnology, Korea National University of Transportation) ;
  • Narbad, Arjan (Gut Health and Food Safety Programme, Institute of Food Research)
  • Received : 2017.01.31
  • Accepted : 2017.02.14
  • Published : 2017.02.28

Abstract

A bioluminescent Lactobacillus plantarum (pLuc2) strain was constructed. The luminescent signal started to increase during the early exponential phase and reached its maximum in the mid-exponential phase in a batch culture of the strain. The signal detection sensitivity of the strain was the highest in PBS (phosphate buffered saline), followed by milk and MRS broth, indicating that the sensitivity was influenced by the matrix effect. The strain was used in millet seed fermentation which has a complex matrix and native lactic acid bacteria (LAB). The luminescent signal was gradually increased until 9 h during fermentation and abolished at 24 h, indicating that the strain could be specifically tracked in the complex matrix and microflora. Therefore, the bioluminescent labeling system can be used for monitoring LAB in food and dairy sciences and industries.

Keywords

References

  1. Ammor, M. S. and Mayo, B. (2007) Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci. 76, 138-146. https://doi.org/10.1016/j.meatsci.2006.10.022
  2. Boyandin, A. N. and Popova, L. Y. (2003) Expression of luxgenes as an indicator of metabolic activity of cells in model ecosystem studies. Adv. Space Res. 31, 1839-1845. https://doi.org/10.1016/S0273-1177(03)80023-6
  3. Cronin, M., Sleator, R. D., Hill, C., Fitzgerald, G. F., and van Sinderen, D. (2008) Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice. BMC Microbiol. 8, 161. https://doi.org/10.1186/1471-2180-8-161
  4. Daniel, C., Poiret, S., Dennin, V., Boutillier, D., Lacorre, D. A., Foligné, B., and Pot, B. (2015) Dual-color bioluminescence imaging for simultaneous monitoring of the intestinal persistence of Lactobacillus plantarum and Lactococcus lactis in living mice. Appl. Environ. Microbiol. 81, 5344-5349. https://doi.org/10.1128/AEM.01042-15
  5. D'Argenio, V. and Salvatore, F. (2015) The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta 451, 97-102. https://doi.org/10.1016/j.cca.2015.01.003
  6. de Vos, W. M. (2011) Systems solutions by lactic acid bacteria: from paradigms to practice. Microb. Cell Fact. 10, S2. https://doi.org/10.1186/1475-2859-10-S1-S2
  7. Eom, H. J., Park, J. M., Seo, M. J., Kim, M. D., and Han, N. S. (2008) Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene. J. Ind. Microbiol. Biotechnol. 35, 953-959. https://doi.org/10.1007/s10295-008-0369-y
  8. Eom, J. E., Ahn, W. G., Her, S., and Moon, G. S. (2015) Construction of bioluminescent Lactobacillus casei CJNU 0588 for murine whole body imaging. Food Sci. Biotechnol. 24, 595-599. https://doi.org/10.1007/s10068-015-0077-0
  9. Francis, K. P., Yu, J., Bellinger-Kawahara, C., Joh, D., Hawkinson, M. J., Xiao Purchio, G. F., Caparon, M. G., Lipsitch, M., and Contag, P. R. (2001) Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect. Immun. 69, 3350-3358. https://doi.org/10.1128/IAI.69.5.3350-3358.2001
  10. Galland, L. (2014) The gut microbiome and the brain. J. Med. Food 17, 1261-1272. https://doi.org/10.1089/jmf.2014.7000
  11. Gory, L., Montel, M. C., and Zagorec, M. (2001) Use of green fluorescent protein to monitor Lactobacillus sakei in fermented meat products. FEMS Microbiol. Lett. 194, 127-133. https://doi.org/10.1111/j.1574-6968.2001.tb09457.x
  12. Higashikawa, F., Noda, M., Awaya, T., Nomura, K., Oku, H., and Sugiyama, M. (2010) Improvement of constipation and liver function by plant-derived lactic acid bacteria: a double-blind, randomized trial. Nutrition 26, 367-374. https://doi.org/10.1016/j.nut.2009.05.008
  13. Karimi, S., Ahl, D., Vagesjo, E., Holm, L., Phillipson, M., Jonsson, H., and Roos, S. (2016) In vivo and in vitro detection of luminescent and fluorescent Lactobacillus reuteri and application of red fluorescent Cherry for assessing plasmid persistence. PLoS One 11, e0151969. https://doi.org/10.1371/journal.pone.0151969
  14. Katz, J. A. (2006) Probiotics for the prevention of antibiotic-associated diarrhea and Clostridium difficile diarrhea. J. Clin. Gastroenterol. 40, 249-255. https://doi.org/10.1097/00004836-200603000-00017
  15. Moon, G. S., Lee, Y. D., and Kim, W. J. (2008) Screening of a novel lactobacilli replicon from plasmids of Lactobacillus reuteri KCTC 3678. Food Sci. Biotechnol. 17, 438-441.
  16. Morelli, L. (2014) Yogurt, living cultures, and gut health. Am. J. Clin. Nutr. 99, 1248S-1250S. https://doi.org/10.3945/ajcn.113.073072
  17. Ninomiya, K., Yamada, R., Matsumoto, M., Fukiya, S., Katayama, T., Ogino, C., and Shimizu, N. A. (2013) Image analyzing method to evaluate in situ bioluminescence from an obligate anaerobe cultivated under various dissolved oxygen concentrations. J. Biosci. Bioeng. 115, 196-199. https://doi.org/10.1016/j.jbiosc.2012.09.006
  18. Oguntoyinbo, F. A. and Narbad, A. (2012) Molecular characterization of lactic acid bacteria and in situ amylase expression during traditional fermentation of cereal foods. Food Microbiol. 31, 254-262. https://doi.org/10.1016/j.fm.2012.03.004
  19. Phumkhachorn, P., Rattanachaikunsopon, P., and Khunsook, S. (2007) Use of the gfp gene in monitoring bacteriocin-producing Lactobacillus plantarum N014, a potential starter culture in ham fermentation. J. Food Prot. 70, 419-424. https://doi.org/10.4315/0362-028X-70.2.419
  20. Riaz Rajoka, M. S., Shi, J., Zhu, J., Shao, D., Huang, Q., Yang, H., and Jin, M. (2017) Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Appl. Microbiol. Biotechnol. 101, 35-45. https://doi.org/10.1007/s00253-016-8005-7
  21. Sanz, Y., Nadal, I., and Sánchez, E. (2007) Probiotics as drugs against human gastrointestinal infections. Recent Pat. Antiinfect. Drug Discov. 2, 148-156. https://doi.org/10.2174/157489107780832596
  22. Tsai, Y. T., Cheng, P. C., and Pan, T. M. (2012) The immuno-modulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl. Microbiol. Biotechnol. 96, 853-862. https://doi.org/10.1007/s00253-012-4407-3
  23. Tsai, Y. T., Cheng, P. C., and Pan, T. M. (2014) Anti-obesity effects of gut microbiota are associated with lactic acid bacteria. Appl. Microbiol. Biotechnol. 98, 1-10. https://doi.org/10.1007/s00253-013-5346-3
  24. van de Guchte, M., van der Vossen, J. M., Kok, J., and Venema, G. (1989) Construction of a lactococcal expression vector: Expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55, 224-228.
  25. Yu, Q. H., Dong, S. M., Zhu, W. Y., and Yang, Q. (2007) Use of green fluorescent protein to monitor Lactobacillus in the gastro-intestinal tract of chicken. FEMS Microbiol. Lett. 275, 207-213. https://doi.org/10.1111/j.1574-6968.2007.00877.x

Cited by

  1. New Progress regarding the Use of Lactic Acid Bacteria as Live Delivery Vectors, Treatment of Diseases and Induction of Immune Responses in Different Host Species Focusing on <i>Lactobacillus</i> Species vol.07, pp.04, 2017, https://doi.org/10.4236/wjv.2017.74004
  2. Construction of a Bioluminescent Labelling Plasmid Vector for Bifidobacteria vol.38, pp.4, 2018, https://doi.org/10.5851/kosfa.2018.e17