
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, Jan. 2017 39
Copyright ⓒ2017 KSII

Parallel task scheduling under multi-Clouds

Yongsheng Hao1,2*, Mandan Xia3, Na Wen4, Rongtao Hou5, Hua Deng4, Lina Wang6, Qin Wang5
1 Information management department, Nanjing University of Information Science & Technology,

 Nanjing, 210044, China
[e-mail: yongshenghao@yahoo.com]

2 State International S&T Cooperation Base of Networked Supporting Software, Jiangxi Normal University,
330022, China

3 School of languages and cultures, Nanjing University of Information Science & Technology,
 Nanjing, 210044, China

4College of Atmospherics Science, Nanjing University of Information Science & Technology,
 Nanjing, 210044, China

5School of computer and software, Nanjing University of Information Science & Technology,
 Nanjing, 210044, China

6 School of electronic & information engineering, Nanjing University of Information Science & Technology,
 Nanjing, 210044, China

*Corresponding author: Y. Hao

Received August 15, 2016; revised October 31, 2016; revised December 2, 2016; accepted December 4, 2016;
published January 31, 2017

Abstract

In the Cloud, for the scheduling of parallel jobs, there are many tasks in a job and those tasks
are executed concurrently on different VMs (Visual machines), where each task of the job will
be executed synchronously. The goal of scheduling is to reduce the execution time and to keep
the fairness between jobs to prevent some jobs from waiting more time than others. We
propose a Cloud model which has multiple Clouds, and under this model, jobs are in different
lists according to the waiting time of the jobs and every job has different parallelism. At the
same time, a new method-ZOMT (the scheduling parallel tasks based on ZERO-ONE
scheduling with multiple targets) is proposed to solve the problem of scheduling parallel jobs
in the Cloud. Simulations of ZOMT, AFCFS (Adapted First Come First Served), LJFS
(Largest Job First Served) and Fair are executed to test the performance of those methods.
Metrics about the waiting time, and response time are used to test the performance of ZOMT.
The simulation results have shown that ZOMT not only reduces waiting time and response
time, but also provides fairness to jobs.

Keywords: parallel tasks, 0-1 integer programming, Virtual machines, multi-Clouds

https://doi.org/10.3837/tiis.2017.01.003 ISSN : 1976-7277

https://doi.org/10.3837/tiis.2017.01.001

40 Hao et al.: Parallel task scheduling under multi-Clouds

1. Introduction

The Cloud is a type of parallel and distributed system consisting of a collection of
inter-connected and virtualized computers that are dynamically provisioned and presented as
one or more unified computing resource(s) based on service-level agreements established
through negotiation between the service providers and consumers [1]. In recent years, more
and more attention has been given to Cloud market/SLA(service level agreement)
management, Green Clouds/resource efficiency, Cloud resource management, Cloud
programming models and so on [2].

More and more resources and systems are migrated to Cloud environment. The importance
of scheduling methods is apparent in Cloud computing. It not only decides the performance of
the Cloud system, but also influences the satisfaction of the Cloud user. Some scheduling
methods have been proposed to solve the problem.

Z. Fan et al. extend the OO (ordinal optimization) scheme to meet the special demands from
cloud platforms that apply to virtual clusters of servers from multiple data centers [3]. A new
RCO (Ranking Chaos Optimization) is proposed to schedule large-scale Cloud resources [4].
With the consideration of large-scale irregular solution spaces, a new adaptive chaos operator
is designed to traverse wide spaces within a short time. Besides, dynamic heuristics and
ranking selection are introduced to control the chaos evolution in the proposed algorithm.

L.Wenjuan et al. add trust management to check workflows QoS and propose a novel
customizable cloud workflow scheduling model [5]. It divides workflow scheduling into two
stages: the macro multi-workflow scheduling as the unit of cloud user and the micro single
workflow scheduling. Trust mechanism is used to enhance the system performance in different
aspects. Some methods also pay attention to energy consumption in the Cloud. F. Satoh et al.
develop a Cloud energy management system with sensor management functions, with an
optimized VM allocation tool to minimize energy consumption at multiple data centers [6]. A.
Alnowiser et al. propose an energy efficient job scheduling approach based on a modified
version of weighted round robin scheduler that incorporates VMs reuse and live VM migration
without compromising the SLA (Service Level Agreement) [7]. Martin et al. investigate three
possible distributed solutions for resource scheduling methods in Cloud [8]: approaches
inspired by honeybee foraging behavior [9], biased random sampling and active Clustering [9].
N. Cordeschi et al. [15] propose a scheduling method to minimum-energy which takes account
of those aspects at the same time: task sizes, computing rates, communication rates and
communication powers. Furthermore, considering the hard per-job delay-constraints, N.
Cordeschi et al. [16] propose a scheduling method to minimize the overall
computing-plus-communication energy consumption in VNetDC (virtualized networked data
center).

The scheduling of parallel jobs is more difficult in comparison with the scheduling of
non-parallel jobs. The scheduling goal is to maximize the performance of the system and to
minimize unnecessary delays; at the same time, it provides fairness for resource users. The
task of the same job can be allocated to different VMs at the same time and those tasks will be
executed synchronously. In this way, we avoid that a task waits other tasks of the same job.
And in this paper, we suppose every job has some parallel tasks. The scheduling of parallel
jobs has been widely studied in the past in distributed system [11, 19], cluster system [10, 13,
20], parallel system [14], Grid and Cloud Computing [14, 21, 22, 23, 24].

Because parallel tasks of a job need to get data from other tasks or provides data for others’
tasks frequently [10], we need to find a way to assign those tasks that belong to the same job as
soon as possible, and to reduce the execution time. We also need to dynamically initial VMs

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 41

(or hosts) to satisfy the system requirement. The main contributions of the paper include: (1)
we give a framework for the scheduling of parallel tasks under multi-Clouds; and then (2) we
propose our scheduling method based on our analysis of the goals and the requirements; lastly,
(3) simulations are executed to test our method under different conditions.

In the simulation, we give a comparison between our method and AFCFS (Adapted First
Come First Served) and LJFS (Largest Job First Served), because most scheduling methods of
parallel jobs in different areas [10~14] are AFCFS and LJFS, or an extension of them. Fair
Scheduler [27] has been widely used in the Cloud, so we give a comparison between Fair
Scheduler and our method. Fair Scheduler ensures the job shares more resources if there are
some resources having no jobs. The simulations are executed in a simulation environment and
on a real log.

This paper focuses on the scheduling of parallel jobs in Cloud computing, and proposes a
scheduling method-ZOMT. The structure of this paper is as follows. Section 2 is the related
work of scheduling methods of parallel jobs. Section 3 introduces details of workload models.
Section 4 proposes our scheduling method based on the analysis of the goals and the
requirements. Section 5 presents the parameters of the simulation and discusses the result in
the simulation. Finally, in Section 6, we provide some concluding remarks and suggestions for
our future work.

2. Related Work
There are many traditional scheduling methods for parallel jobs in different systems. Gang
scheduling is a special case of parallel scheduling and many methods of Gang scheduling have
been evaluated by researchers. They are adapted first come first served (AFCFS) [12, 13, 14],
largest job first served (LJFS) [12, 13, 14] (or LGFS, in fact, A Gang is a big job with some
tasks), queue insertions dependent largest job first served (QLJFS) [12], periodic largest job
first served (PLJFS) [12]. AFCFS schedules the job if the number of empty VMs is greater
than the parallelism of the job. When the number of empty VMs is less than the parallelism of
the job in the waiting queue, then the AFCFS policy gives up the job and considers the next job
until it finds a job that can be executed. With LJFS, according to the increasing order of the
parallelism of the job, jobs are placed in the queue (jobs with large parallel jobs are placed
ahead in the queue). All jobs are searched one by one, and the first job starts execution if the
number of VMs is more than the parallelism of the job. PLJFS policy rearranges the
scheduling order of jobs only at the end of predefined time period t. At the end of a period, the
scheduler center recalculates the priorities of all jobs in the queue and sorts them in the
decreasing order of the parallelism of the job. QLJFS rearranged the scheduling order
according to the LJFS method when every job was inserted in the waiting queue. In Cloud,
considering the migrations of VM, adapted first come first served with migrations
(AFCFSwM) [15] and largest Gang first served with migrations (LGFSwM) [13] are proposed.
AFCFSwM algorithm uses AFCFS as the local scheduling method in each system (Cloud,
Grid and so on), and at the same time, it also implements local and server migrations. The
same as AFCFSwM, LGFSwM is the migration version of the LGFS. At the same time, Gang
scheduling also has been widely studied in many areas including the Clusters [10], the
distributed system [11, 17], multi-core system[13], parallel system [12, 18] Grid and Cloud
Computing [14]. Table 1 gives a summary of the traditional methods (or based on those
traditional methods) that have been discussed in different papers.

42 Hao et al.: Parallel task scheduling under multi-Clouds

Table 1. The scheduling method in different papers in different environments

 Distributed
system

Multi-core
system

Parallel
system Cluster Grid

Cloud
AFCFS [11] [13] [12] [10] [14]
LJFS [11] [13] [12] [10] [14]

AFCFSwM - - - - [13,15]
LGFSwM - - - - [13,15]

In fact, considering more aspects of the scheduling of parallel jobs, more methods have been

given by researchers. Z. Fan et al. extend the OO (ordinal optimization) scheme to meet the
special demands from cloud platforms that apply to virtual clusters of servers from multiple
data centers [3]. In [19], the scheduling goal is to maximize the number of finished jobs that
have been completed before their deadlines. Considering the scheduling of non-malleable
parallel tasks and malleable tasks specially, they propose two polynomial-time approximation
algorithms for different tasks. EDF (earliest deadline first) is used to schedule non-malleable
tasks and an extension of EDF is used to schedule malleable tasks.

G. B. Jorge et al. try to solve the problem of minimizing the makespan of a batch of jobs
with different system loads [20]. They schedule the resource dynamically. When a new job
coming that may result in changing the assigned resources to other jobs during its execution.
The scheduling method includes two steps: a scheduling strategy and a scheduling algorithm.
An adaptation of the HEFT (Heterogeneous Earliest-Finish-Time) algorithm is proposed to
solve the problem of scheduling of parallel tasks in heterogeneous environment.

The AsQ (Adaptive Scheduling with QoS Satisfaction algorithm) [21] tries to find a
resource scheduling scheme for different aspects: the utilization rate of the private cloud, the
renting expense, and the task finish time are optimized and so on. They take the scheduling of
the parallel tasks as a variation of the multi-dimension multi-choice knapsack problem and
they develop a fast scheduling strategy which ensures the cost and the deadline constraints.

H. Ting et al. consider the problem of scheduling of parallel tasks of different priorities [22].
Low-priority tasks may be assigned to underutilized computation resources which have been
assigned to some high-priority tasks. But this may result in some tasks waiting more time and
some servers migrating dynamically. The goal of scheduling is to allocate the low-priority
tasks to low load server resources while minimizing the combined cost of waiting and
migration. They solve the scheduling problem as restless MAB (Multi-Armed Bandits).

Scheduling parallel scientific workflows in the cloud is a very complex task since the
scheduling may have different goals and criterions. In [23], the authors introduce an adaptive
scheduling heuristic for parallel execution of scientific workflows in the cloud that is based on
three criterions: total execution time (makespan), reliability and financial cost. They propose a
weighted cost function and an adaptive scheduling heuristic to explore the dynamicity of
clouds while scheduling Cloud activities to several VMs in a virtual cluster. They not only
implement the cost model but also evaluate the scheduling algorithms in SciCumulus.

In the paper, we only pay attention to AFCFS and LJFS in the simulation, because most of
works of parallel scheduling are based on them and the past works also show that they (or one
of them) have better performance (especially AFCFS). For the scheduling of parallel tasks,
migrations may bring many problems for the scheduling, because one job has many tasks
which are executed at the same time, and one migration of a VM not only influences the task,
but also influences the tasks which belong to the same job, so we do not take account of the
migrations of the parallel tasks in the paper. Though we do not take account of migrations of
VMs, simulations evaluate the performance of our method when the VM can shut off or

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 43

migrate under some assumptions.

3. System model
Tasks of a job are required to send and receive data very frequently in the same jobs. Thus, the
number of VMs required by the job and its parallelism have the same values. In the model
under our study, parallelisms of those jobs are random numbers following the discrete uniform
distribution and the maximum of the parallelism is maxplism. The mean time between jobs’
arriving is exponentially distributed with a mean of 1/λ. There exists no correlation between
service time and the parallelism of jobs. For example, a job with large parallelism does not
mean to must have a long service time. A large job (We call it LPJ in the following paper)
refers to the job with big value of parallelism. It needs more processors at the same time, and
this does not mean that it needs more time than others.

According to the parallelism of the job, there are two kinds of jobs: small parallel jobs (SPJ)
and large parallel jobs (LPJ) [12]. The parallelism of SPJ has a scope of [1, midv] and its
probability is q. midv is the maximum value of the parallelism of SPJ. LPJ has the parallelism
in the range of [midv+1, midl] and its probability is 1-q. midl is the maximum value of the
parallelism of LPJ. The two kinds have the same scopes. In other words, midl is double of midv.
So, we can get the average parallelism (AP) of every job as

= *(1+)/2+(1-)*(1)/2AP q midv q midv midl+ + （1）

There are two kinds of jobs according to the parallelism of jobs: SPJ or LPJ (Fig. 1). They
arrive at the average rate of λ. RS (Resource Schedule) is in charge of the resource scheduling.
As in [3], RS controls the application-to-VM level and it assigns tasks of a given job to
different VMs at the same time. The same model is also taken by [14].

4. Scheduling method for parallel tasks in multi-Clouds

4.1 job routing
In this paper, our routing method fills the same time empty queue (FSTEQ, see Algorithm 1).
Every data center registers the relative data with the details of resources to the RS. RS manages
the resource and monitors those states of resources. For the job jtemp, when it comes, first of all,
it is inserted into the waiting list wlist (lines 1-2, Algorithm 1, same in the following paper).
RS (Resource scheduler) is in charge of resource scheduling which takes FSTEQ algorithm for
the system. FSTEQ checks the waiting time (wttemp) of every job, and if the value is more than
time1, the job is inserted into the scheduling list slist. time1 ensures that every job does not
wait too much time. Then, if there are more places for more jobs, FSTEQ checks every job in
the waiting list wlist and inserts some of them that can be inserted into slist. Tasks of the same
job must be assigned to different queues in the same positions since the scheduling requires
that there exists a one-to-one mapping of tasks to VMs (Fig. 1). See job(i), T(1), T(pos) and
T(j) are the tasks of job(i). RS checks the resource utilization rate and the finished rate of jobs
periodically and decides to initiate (or stop) a new VM or a new Cloud server.

Algorithm 1 gives the details of the FSTEQ. Lines 1~5 check whether there are places for
the new coming parallel jobs. “checkempty(slist)” returns “true” when there are enough
resources for the job (lines 1~2, Algorithm 1); otherwise, it returns “false” (lines 3~5,
Algorithm 1). If “checkempty(wlist)” returns “true”, the job will be placed in wlist (lines 4,

44 Hao et al.: Parallel task scheduling under multi-Clouds

Algorithm 1).The function of “ Insertlist(𝑗𝑡𝑒𝑚𝑝,𝑤𝑙𝑖𝑠𝑡) ” is to insert the job 𝑗𝑡𝑒𝑚𝑝 to wlist and
returns the new wlist. Then, we will check the waiting time if the jobs in the wlist, and if the
waiting time is more than time1, the job will be inserted to slist (lines 6~12). Furthermore, if
there are more places for the jobs in wlist, we will insert more jobs to slist as the AFCFS
(Adaptive First comes first service) policy. At last, the system checks the system load
condition to decide whether it needs to initiate (or stop) a new VM or a new Host (line 20).

… …T(pos)… …

Job(i)

T(1) T(pos)

... ...
T(j)

...

VM（1） VM（temp） VM（j） VM（vmmax）...

strategies

AFCFS
LJFS

ZOMT
QLJFS
PLJFS

...

wlist(time1)

slist(time2)

RS

FSTEQ

Initiate VM
(Stop VM)

Job(i)

T(j)T(1)

Fig. 1. FSTEQ system model

Algorithm 1: FSTEQ ()
1. If checkempty(wlist)

//Checks there are places in wlist, and if there are places, jtemp is inserted into
wlist

2. 𝑠𝑙𝑖𝑠𝑡 = Insertlist(𝑗𝑡𝑒𝑚𝑝,𝑤𝑙𝑖𝑠𝑡)
3. Else
4. 𝑤𝑙𝑖𝑠𝑡 = Insertlist(𝑗𝑡𝑒𝑚𝑝,𝑤𝑙𝑖𝑠𝑡)

// otherwise, the job is inserted into wlist
5. Endif
6. For 𝑗𝑡𝑒𝑚𝑝 ∈ 𝑤𝑙𝑖𝑠𝑡
7. If wttemp >time1
8. If Checkempty(slist)
9. 𝑠𝑙𝑖𝑠𝑡 = Insertlist(𝑗𝑡𝑒𝑚𝑝, 𝑠𝑙𝑖𝑠𝑡)

10. Endif
11. Endif
12. Endfor
13. If Checkempty(slist)
14. For 𝑗𝑡𝑒𝑚𝑝 ∈ 𝑤𝑗
15. If Checkempty(slist)
16. 𝑠𝑙𝑖𝑠𝑡 = Insertlist(𝑗𝑡𝑒𝑚𝑝, 𝑠𝑙𝑖𝑠𝑡) //Insert jbtemp into the scheduling list slist;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 45

17. Endif
18. Endfor
19. Endif
20. Check the system load condition to decide whether it needs to initiate (or stop) a

new VM or a new host.

To enhance the utilization ratio of resources, we can stop some VMs when we find the

resources are enough and some resources always cannot get tasks, in others words, when the
supply of resources is more than the demand of resources. On the contrary, if there are many
jobs cannot be finished, we can initiate some VMs for the job (Line 16). Suppose that the
average arrival rate of jobs is λ and the average parallelism is AP, then the number of VMs that
we need is needvm:

 *needvm APλ=

First of all, we initiate all the 120 VMs. We only initiate 120 VMs because the maximum of
the leasing VMs of a host of a Cloud center is 120 [28]. Then, according to the value of the
jobs that have been finished, we get the value of λ and AP. To ensure the system performance,
we initiate more VMs than we need. The number of initiated VMs is inivm (1>α >0):

 * *(1)inivm APλ α= +

Too many VMs in the same host reduce the performance of every VM in the host. A host
(or server) has a maximum number of VMs. In Fig. 1, if the online server has more ability to
initiate a new VM, we will use the server until it has no ability to support a new VM; otherwise,
we will initiate a new host for the initialization of the new VM. A simple process for the server
and VM initial is as follows:

(1) For the new VM cv, computer checks every host with the relative attributes whether
they can satisfy cv. Those attributes include: virtualization software, CPUs type and
computational capabilities, shared hardware, the usage of shared storage and so on. We sort
those hosts according to the ascending order of the leaving attributes (CPU, memory, and
bandwidth).

(2) If we can get hosts in step 1, we initial cv in the first host, otherwise, we go to step (4);
(3) If a host has not been assigned any tasks for long time, we will shut the host to reduce

energy consumption;
(4) If we cannot get host in step 2, we initiate a host;
(5) Repeat steps 1-5 for the new request of VM.

4.2 job scheduling
In section 2, we have introduced other scheduling methods. And in this section, we will
propose our scheduling method-ZOMT.

Let vmmax be the maximum number of VMs. The parallelism of jobi is pli. The scheduling
result of jobi is sci, if sci equals to 1, the job has been scheduled; otherwise, the job has not been
scheduled yet. The waiting time of jobi is wti.

If some jobs wait more time than others, it is unfair to those jobs. So we set wte to denote the
longest time that the job waits in the queue (See Fig.1, it is time2). If the waiting time is more
than wte, the job is scheduled immediately. Suppose those jobs whose waiting time is more
than wte are listed in the list of olist and others are listed in the list of wlist:

46 Hao et al.: Parallel task scheduling under multi-Clouds

olist={job1, job2, job3,…,jobonum}

wlist={job1, job2, job3,…,jobwnum}

The number of VMs that is requested by the jobs in olist is

1

onum

temp
temp

sumo pl
=

= ∑ (2)

After this scheduling of olist, the number of leaving VMs is

lnum=vmmax-sumo

Then the problem is how to schedule the job in wlist with lnum VMs. The scheduling must
meet the condition:

1
()

wnum

temp temp
temp

pl sc lnum
=

× ≤∑ (3)

At the same time, there are two goals in the scheduling: (1) to maximize the total value of
parallelisms of all scheduled jobs, most resources have been used by jobs (2) to maximize the
waiting time of all scheduled jobs, we can reduce the jobs’ waiting time:

1

1

(1) max(())

(2) max(())

wnum

temp temp
temp

wnum

temp temp temp
temp

pl sc

pl wt sc

=

=

×

 × ×

∑

∑

The coefficients are listed as:

oarray=[pl1.*wt1., … , pltemp.*wttemp, … , plwnum*wtwnum]

plarray=[pl1, … , pltemp, …, plwnum]

scresult=[sc1, … ,sctemp, …, scwnum]

oarray, plarray, and scresult are the sets of the weighted waiting time of those jobs, the
parallelisms and the scheduling result, respectively.

We suppose the two goals have the same weight to the system, so the goal becomes:

1 1
(0.5* (0.5* ())

= =

= × + × ×∑ ∑
wnum wnum

temp temp temp temp temp
temp temp

tempmax pl sc pl wt sc (4)

An implied condition is that we should schedule as many as possible of the number of VMs
to enhance the resource utilization efficiency. Let us suppose that at least rratio resources
(ratio) have been assigned to different jobs. 𝑠𝑐𝑡𝑒𝑚𝑝 represents that whether the job has been
assigned. If 𝑠𝑐𝑡𝑒𝑚𝑝 equals 1, it has been assigned to a resource, otherwise, it waits more time.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 47

There must exist:

1
()

wnum

temp temp
temp

pl sc rratio lnum
=

× ≥ ×∑ (5)

i.e.

1
()

wnum

temp temp
temp

pl sc rratio lnum
=

− × ≤ − ×∑ (6)

rratio has a range of [0, 1].
From equations (4), (5), (6), the scheduling becomes a 0-1 integer programming with many

conditions and one goal, which can be solved with enumeration (some other methods also can
be used to solve the problem). Tools including MATLAB provide the method to solve the
problem and the method is bintprog (http://www.hackchina.com/en/r/153791/bintprog.m__html).
oarray is the coefficient of the objective function. plarray and -plarray are the coefficient of
getmax. Formula (3) and (6) are the constraints, and (4) is the objective function.

The algorithm of our proposed scheduling method is given as follows:

Algorithm 2: ZERO-ONE scheduling in One Cloud center
Input: olist={job1, job2, job3,…,jobonum}
 wlist={job1, job2, job3,…,jobwnum}

tlvm=vmmax;
Output：scresult={value1,value2, value3,…,valuetemp,…, valuewnum}
1. For i=1:onum
2. If tlvm >= jobi..pl
3. Scheduling(jobi) ;
4. tlvm = tlvm -jobi..pl;
5. Endif
6. Endfor
7. [scresult, fval]=getmax(tempmax, [plarray; - plarray], [tlvm, rratio* tlvm])
8. For(temppos=1:wnum)
9. If (scresult (temppos)==1)
10. Scheduling(jobtemppos) ;
11. tlvm = tlvm - jobtemppos..pl;
12. Endif
13. Endfor
14. If sum(scresult)==0
15. Scheduling all jobs as AFCFS
16. Endif
17. For i=1:wnum
18. If scresult >= jobi..pl && scresult(temppos)==0 ;
19. Scheduling (jobi) ;
20. tlvm = tlvm -jobi..pl;
21. Endif
22. Endfor

http://www.hackchina.com/en/r/153791/bintprog.m__html

48 Hao et al.: Parallel task scheduling under multi-Clouds

Lines 1-6 are the scheduling of the jobs that have waited for a long time, i.e., the jobs in
“Scheduling list”(Fig. 1). We use AFCFS policy for those jobs. After scheduling, all jobs in
slist are assigned to the resources. Line 7 is ZONE-ONE integer programming with two
requirements and two goals. getmax returns the goal function (Formula 4) with two conditions
(Formula (3, 6)). The target is formula (4). The two conditions requirements are formula (3)
and (6). scresult is an array of 1*wnum. If scresult[temp] is equal to 1, the jobtemp is scheduled
by the Cloud; otherwise, the job cannot be scheduled and waits for the next time scheduling
(lines 8-13). fval is the minimum of formula (4) and it is the value of the target function, which
is the maximum of the multiple target functions. If 0-1 integer programming has no answer to
the problem, the summation of sresult equals 0, we schedule the system as AFCFS. Sometimes,
after the 0-1 integer programming, some resources may not be assigned to any jobs and we can
schedule more jobs again as AFCFS (lines 17-22). We schedule resources in this way to
enhance resource utilization efficiency.

The maximum of the VMs of the host of a Cloud center is vmmax=120 [28]. So, we have no
efficiency problem to solve the 0-1 integer problem in the scheduling in one host. bintprog is
used to solve the problem of ZONE-ONE integer programming in matlab and it can be used in
our solution to take place of “getmax” function. We test “bintprog” in our simulation
environment, the maximal value of executing time is less than 10 seconds, which is a very low
value to the execution time of the job in the Cloud. The job in the Cloud always needs many
minutes even many hours. So, for a Cloud center, we don’t need to take account of the
execution time of Algorithm 2.

But for a real Cloud system, there are many servers and every server has many VMs,
Algorithm 2 has an efficiency problem in the real system. To overcome this shortcoming, we
should find a method with higher efficiency for the scheduling in the Cloud center. Algorithm
3 is the new method.

Algorithm 3: ZOMT()
Input:olist={job1, job2, job3,…,jobonum}

wlist={job1, job2, job3,…,jobwnum};
Output：jscresult={value1,value2, value3,…,valuetemp,…, valuewnum};
1. Sort(olist);

//Sort jobs according to the descending order of parallelisms;
2. For i=1:onum
3. If tlvm >= jobi..pl
4. Scheduling(jobi) ;
5. tlvm = tlvm -jobi..pl;
6. Endif
7. If tlvm<120
8. initiate(tlvm);
9. Endif
10. Endfor
11. For temp=1:onum
12. For jt ∈ olist
13. If tlvm >= jt..pl
14. Scheduling(jt) ;
15. tlvm = tlvm - jt..pl;
16. Endif
17. If tlvm<120

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 49

18. initiate(tlvm);
19. Endif
20. Endfor
21. Endfor
22. While Empty(olist)
23. Do
24. For temp=1:wnum
25. For jt ∈ wlist
26. If tlvm >= jt..pl
27. Scheduling(jt) ;
28. tlvm = tlvm - jt..pl;
29. Endif
30. If tlvm<120
31. initiate(tlvm);
32. Endif
33. Endfor
34. Endfor
35. While Empty(wlist)
36. Algorithm 2()

onum and wnum are the numbers of jobs in olist and wlist. olist and wlist are the sets of the

jobs whose waiting time is more than the expected time and the jobs in the waiting list. jobi..pl
is the parallelism of the job jobi. In Algorithm 3, lines 1-7 are scheduling the jobs whose
waiting time is more than a fixed value, we take the AFCFS policy for those jobs, which is the
same as Algorithm 2. We schedule jobs in olist first. olist is a set of jobs that wait for being
scheduled, but those jobs can also wait yet. tlvm records the total number of VMs. First of all,
we sort jobs in olist according to the parallelisms of the jobs (Line 1, algorithm 3, same in the
following paper) and then we schedule those jobs according to the AFCFS policy. If the
selected data center has no enough resources for the selected job,we will find a new data center
which has the largest bandwidth between the selected data center and the new one. We
selected the largest bandwidth because the bandwidth also influences the synchronization of
the parallel tasks. “initiate(tlvm)” tries to find the new data center and it adds the resource
fragment to the new data center (line 8; lines 19 and 33 have the same meaning). Then we
schedule the jobs in wlist (lines 11~38). First of all, we also take AFCFS policy for the
scheduling of the jobs in wlist. When there are resource fragments in the data center, we also
add those resource fragments to a new data center (lines 24~37). We also select the new data
center which has the largest bandwidth to the current selected Cloud data center. During the
period, we check the requirement of leaving jobs to the number of VMs to see whether it is less
than 120 (line 30), and if the value is less than 120, we will use algorithm 2 to schedule the rest
of jobs and VMs. The reason why we select 120 as a checkpoint: (1) A host (or server) of a
Cloud center can initial the maximum number of VMs is mavmmax=120 [28]; (2) there are
only a few seconds to get the result of 0-1 integer programming, and we have no efficiency
problem under mavmmax=120 (Algorithm 2).

4.3 Complexity analysis
Suppose there are onum jobs in olist and wnum jobs in wlist. Our scheduling framework has

three algirithms and the complexity is decided by the three algorithms:

50 Hao et al.: Parallel task scheduling under multi-Clouds

Algirithm 1 has a complexity of O(onum+wnum).
The complexity of algorithm 2 is decided by the 0-1 integer programming. But in fact, the

maximum of the number of VMs in a data center is a constant (such as 120) and the rest jobs in
wlist is also less than the constant. So, the complexity of algorithm 2 is O(1)

The complexity of algorithm 3 is decided by the main three steps: allocation of the jobs in
olist, allocation of the jobs in wlist and Algorithm 2:

For the allocation of jobs in olist, the sort of the jobs in olist is O(onumlog(onum)), lines
2-10 are the AFCFS policy and they have a complexity of O(onum). So, the complexity of the
first step is:

O(𝑜𝑛𝑢𝑚 log(𝑜𝑛𝑢𝑚)) + O(𝑜𝑛𝑢𝑚)= O(𝑜𝑛𝑢𝑚 log(𝑜𝑛𝑢𝑚))
For the second step, lines 11~21 are also the AFCFS for the jobs in wlist, and the complexity

of the second step is O(𝑤𝑛𝑢𝑚).
For the third step, the complexity is decided by Algorithm 2.
So, the complexity of algorithm 3 is:
O(𝑜𝑛𝑢𝑚 log(𝑜𝑛𝑢𝑚)) + O(𝑤𝑛𝑢𝑚) + O(1) = O(𝑜𝑛𝑢𝑚 log(𝑜𝑛𝑢𝑚)) + O(𝑤𝑛𝑢𝑚).
So the complexity of our method is:

O(𝑜𝑛𝑢𝑚 +𝑤𝑛𝑢𝑚) + O(1) + O(𝑜𝑛𝑢𝑚 log(𝑜𝑛𝑢𝑚)) + O(𝑤𝑛𝑢𝑚) =
O(𝑜𝑛𝑢𝑚 + 𝑤𝑛𝑢𝑚) + O(𝑜𝑛𝑢𝑚 log(𝑜𝑛𝑢𝑚))

Suppose there are n jobs in wlist and olist (𝑛 = 𝑜𝑛𝑢𝑚 +𝑤𝑛𝑢𝑚), the complexity of our
method is O(𝑛 log(𝑛)).

5. Simulations and Analysis
All the parameters that we try to evaluate are given in Table 2. ART (Average Response Time)
and AWRT (Average Weighted Response Time) are the average response time and average
weighted response time of the finished jobs. AWT (Average Waiting Time) and AWWT are the
average waiting time and the average weighted waiting time of the finished jobs. SDRT
(Standard deviation of waiting time) is sandard deviation of waiting time of the finished jobs
and SDWWT (Standard deviation of weighted waiting time) is the standard deviation of
weighted waiting time of the finished jobs which takes account of the parallelism of jobs.
SDWT and SDWWT explain the fairness among jobs. Some jobs may wait more time than
others. Formulas (7), (8) and (9) give the calculation methods of SDWT and SDWWT.

𝑠𝑢𝑚𝑡𝑒𝑚𝑝 = � 𝑝𝑙𝑡𝑒𝑚𝑝 × (𝑤𝑡𝑡𝑒𝑚𝑝 𝑝𝑙𝑡𝑒𝑚𝑝⁄ − 𝐴𝑊𝑊𝑇)2
𝑁

𝑡𝑒𝑚𝑝=1
 (7)

𝑆𝐷𝑊𝑇 = �∑ (𝑤𝑡𝑡𝑒𝑚𝑝 − 𝐴𝑊𝑇)2𝑁
𝑡𝑒𝑚𝑝=1 𝑁⁄ (8)

𝑆𝐷𝑊𝑊𝑇 = �𝑠𝑢𝑚𝑡𝑒𝑚𝑝 ∑ 𝑝𝑙𝑡𝑒𝑚𝑝
𝑁
𝑡𝑒𝑚𝑝=1⁄ (9)

We set midl=16 and vmmax=120 in formula (1). The maximum of VMs is vmmax, so

λ<vmmax/AP (10)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 51

We will evaluate the system when it has different ratios in different kinds of jobs, so we
evaluate the system when the values of q are 0.25, 0.50, and 0.75 respectively. According to (1)
and (10):

-When q=0.25, most of jobs belong to SPJ, and the average parallelism of jobs is 10.1250,
λ<18.82;

Table 2. Metrics of the simulations

-When q=0.50, there are the same numbers for the SPJ and LPJ, and the average parallelism

of jobs is 8.2500, λ<14.54;
-When q=0.75, most of jobs belong to LPJ, and the average parallelism of jobs is 6.3750,

λ<11.85.
From the above analysis, we set λ between 5 and 8.5 and the step is 0.5. There are 100000

jobs totally. We run the system 50 times and get the average value of every parameter. We set
α = 0.5, because all the algorithms have a better performance at this time, and at the same time,
the utilization efficiency of the system is kept at a higher level. If the weighted waiting time of
a job is doubled to the average weighted waiting time, the jobs will be scheduled first. Suppose
the execution time of a task is a random between 1 and 5 on a standard VM.

We will compare our method with AFCFS, LJFS and Fair. We have introduced AFCFS and
LJFS in section 1. For Fair, we suppose the algorithm can be paralleled under N (N is an
integer) times of the parallelism.

We utilized Mathlab (2014a) programming language to implement these algorithms and ran
them on an Intel Pentium (R) D 3.4 Ghz, 4 GB RAM desktop PC with 100 MB/s Ethernet card,
Window 8.

5.1 ART and AWRT
Figs. 2~7 depict the comparison of the average response time and average weighted response
time of AFCFS, LJFS, Fair and ZOMT when q=0.25, q=0.50 and q=0.75, respectively. As
showed in those figures, there is not a big difference in the performance of AFCFS, LJFS,
ZOMT when the arrival rate λ is low, especially when λ<6.5.

The values (ART and AWRT) of the three methods remain stable from 5 to 6.5. With the
increase of λ, especially when λ>6.5, in general, the values of the three algorithms rise more

Symbol Meaning

N The total number of jobs
joblist {job1, job2, job3, …, jobN}
plemp The parallelism of jobtemp
wttemp The waiting time of jobtemp
q The percent of jobs that belong to SPJ
1-q The percent of jobs that belong to LPJ
λ Mean arrival rate of jobs
1/λ Mean inter-arrival rate of jobs
Totaltime The time from the first job coming to the last job be finished
ART Average response time
AWRT Average weighted response time
AWT Average waiting time
AWWT Average weighted waiting time
SDWT Standard deviation of waiting time
SDWWT Standard deviation of weighted waiting time

52 Hao et al.: Parallel task scheduling under multi-Clouds

quickly than before. ZOMT always has the lowest value of ART and AWRT of the four
methods. ZOMT keeps the average response time and average weighted response time
increasing more slowly than the others.

Fig. 2. ART vs. λ, q=0.25

Fig. 5. ART vs. λ, q=0.50

Fig. 4. ART vs. λ, q=0.75

Fig. 5. AWRT vs. λ, q=0.25

Fig. 6. AWRT vs. λ, q=0.50

Fig. 7. AWRT vs. λ, q=0.75

From Figs. 2~7, we find that ART and AWRT of the four methods have the same tendency

when the arrival rate is the same. Fair is the large one, followed by AFCFS, LJFS and ZOMT,
respectively. With the growing of arrival rate, distinct differences of the two parameters are
being postponed. Significant difference of the two parameters emerges from λ=6.5. Fair
always has the largest values in ART and AWRT in the four methods.

For all the cases, to the value of ART of AFCFS, LJFS and Fair, ZOMT average reduces by

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 53

11.37%, 22.48% and 40.21%; to the value of AWRT of AFCFS, LJFS and Fair, ZOMT average
reduces by 12.42%, 6.21% and 33.49%.

ZOMT has better performance because it not only makes the jobs which have more waiting
time scheduled firstly, but also uses the method to enhance the resource utilization at any time.
ZOMT has the lowest value in ART and AWRT because: (1) if the waiting time of a job is more
than a certain value, it will be scheduled immediately; (2) ZOMT ensures most of resources
can be used by the job. The two aspects reduce the waiting time and enhance the resource
utilization ratio.

5.2 AWT and AWWT
Figs. 8~13 show the comparison of the average waiting time and average weighted response
time given by AFCFS, LJFS, Fair and ZOMT for q=0.25, q=0.50 and q=0.75, respectively.

It is shown from those figures, the average waiting times of all methods grow more and
more quickly with the arrival rate increasing. When λ<6.5 (especially for q=0.50 and q=0.75),
AFCFS, LJFS and ZOMT tend to offer the same waiting time and weighted waiting time
basically.

The values (AWT and AWWT) of ZOMT are lower than others. ZOMT has higher resource
utilization. ZOMT tries its best scheduling as much as possible, so it reduces the value of AWT
and AWWT. For all the simulation result, to the value of AWT of AFCFS, LJFS and Fair,
ZOMT average reduces by 7.41%, 12.31% and 29.49%; to the value of AWWT of AFCFS,
LJFS and Fair, ZOMT average reduces by 8.39%, 6.79% and 45.59%.

Fig. 8. AWT vs. λ, q=0.25

Fig. 9. AWT vs. λ, q=0.50

Fig. 10. AWT vs. λ, q=0.75

Fig. 11. AWWT vs. λ, q=0.25

54 Hao et al.: Parallel task scheduling under multi-Clouds

Fig. 12. AWWT vs. λ, q=0.50

Fig. 13. AWWT vs. λ, q=0.75

5.3 SDWT and SDWWT

Fig. 14. Average SDWT vs. λ under q=0.75

Fig. 15. Average SDWWT vs. λ under q=0.75

Figs. 14~15 show the comparison of average standard deviation of waiting time and average
standard deviation of weighted waiting time given by AFCFS, LJFS, Fair and ZOMT when q
equals 0.75. Those two values illustrate the fairness among jobs. If the value is too high, this
means that some jobs wait more time than others.

As shown in those figures, besides Fair and ZOMT, standard deviation of waiting time and
standard deviation of weighted waiting time of the other two algorithms grow when the arrival
rate becomes higher. ZOMT and AFCFS give the same performance basically and they have a
smaller value to LJFS and Fair. The value of SDWT and SDWWT of ZOMT is always a little
less than the values of AFCFS. We also find that the standard deviations of ART and AWRT
have the same patterns with SDWT and SDWWT. So, we do not introduce them here.

From the simulations, we find that Fair does not give a good performance in the scheduling
of parallel jobs with different parallelisms especially when the arrival rate is a high value. The
reason is a job in the scheduling needs more VMs. If the Fair scheduler is used, one job takes
more VMs, and it may influence other jobs.

5.4 Simulation for the imgration of VMs

In the simulation, suppose there are about 1~5% percent for the migration of VMs in every
hour. The time for the migration is about 2~10 minutes. Because the parallel tasks of the same
job need to be kept in step in computing, and if a task is stoped, all tasks that belong to the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 55

same job must be stoped and wait until the new VM is initialed. We also suppose the system
supports “slot” [33], so we can begin execution from the most recent slots. And in the
simulation, we suppose the slot is a time unit. We suppose q equals 0.5 in the simulation.

Fig. 16. ART vs. λ (q=0.50) with migration

Fig. 17. AWRT vs. λ (q=0.50) with migration

Fig. 18. AWT vs. λ (q=0.50) with migration

Fig. 19. AWWT vs. λ (q=0.50)with migration

From Figs. 16~19, we can find the four methods have the same trends to the result when q

equals 0.5 in section 5.3. ZOMT always has the lowest value in ART, AWRT, AWT and AWWT.
So, even though there are some VMs that need to be migrated in the scheduling, ZOMT also
has the best performance in those four parameters. Compared to the result in section 5.3, those
four methods both have a increase in those parameters when there are some VMs need that to
be migrated. With the same method, it has an increase in those four parameters when there are
migrations of VMs.

5.5 Simulations on a real log
This simulation uses the data from the log [29]
(http://www.cs.huji.ac.il/labs/parallel/workload/l_ricc/index.html). This log contains several
months accounting records from RIKEN Integrated Cluster of Clusters. It has 4 clusters, and
begins running since August 2009. The system has 1024 nodes, each with 12 GB of memory
and two 4-core CPUs, for a total of 12 TB memory and 8192 cores. We delete those jobs that
are not executed in the log in the simulation. The simulation results are shown in Table 3. The
column 5 of the log is the parallelism of the jobs. We find that ZOMT always has the smallest
value in ART, AWT and SDWT. We also find that Fair also has a relatively good performance

56 Hao et al.: Parallel task scheduling under multi-Clouds

in the log. We give a comparison from the above section 5.1~5.3. We find the result in Table 3
has the same pattern when the arrival rate is 5 and q equals to 0.5. The reason is that the log
comes from a Cluster which is not very busy.

Table 3. Comparisons of different parameters

 AFCFS (e+5) LJFS (e+5) Fair (e+5) ZOMT (e+5)
ART 1.3418 1.3416 1.3080 1.3012
AWT 1.2297 1.2295 1.1999 1.1816
SDWT 1.0214 1.0148 1.0205 0.8145

6. Conclusion
In this paper, we propose a new scheduling method called ZOMT to schedule the job with
different parallelism. We check the performance of our proposed ZOMT in AWT, AWWT, ART,
AWRT, SDWT and SDWWT. Simulation resulting from different aspects proves that ZOMT
outperforms AFCFS, LJFS and Fair for the parameters: AWT, AWWT, ART and AWRT. Even
though there are some VMs that need to be imgrated, ZOMT still has a good performance.

In the Cloud, the VM can initiate and stop at any time. Sometimes, the VM even can migrate
from different places, and this may bring new challenges to the scheduling of parallel jobs. We
hope that we can extend our method to the condition of the migrations of VMs in the Cloud.
Considering the deadline of different parallel tasks, we also hope we can evaluate some
heuristics [30] in the future. We also hope we can evaluate our method on some simulation
platforms, such as Gridsim[31] or Cloudsim[32]. Energy consumption is also a hot topic in the
scheduling. N. Cordeschi et al. [15, 16] have proposed some methods to save energy
consumption in networked data centers. Though this paper does not take account of the energy
consumption, and we only take account of the execution time and the fairness, we also hope
that we can evaluate the energy consumption in the future. Because of the non-linear speedup
of parallel tasks and the dynamic of the Cloud resources, saving energy consumption is more
difficult. We hope we can propose and evaluate more methods to minimize the energy
consumption in some special parallel tasks such as meteorological parallel tasks [33].

Acknowledgments
The work was partly supported by the National Natural Science Foundation of China (NSF)
under grant (NO. 41475089, NO. 71673145), and Open Fund Project (No. NSS1403) of State
International S&T Cooperation Base of Networked Supporting Software, Jiangxi Normal
University.

References
[1] Brandic, I. and R. Buyya, "Special section: Recent advances in utility and cloud computing,"

Future Generation Computer Systems, 28(1): 36-38, 2012. Article (CrossRef Link).
[2] X. Liu, Y. Zha, Q. Yin, Y. Peng, L. Qin, “Scheduling parallel jobs with tentative runs and

consolidation in the cloud,” Journal of Systems and Software, Volume 104, Pages 141-151, ISSN
0164-1212, June 2015. Article (CrossRef Link).

[3] F. Zhang, J. Cao, K. Li, S. U. Khan, K. Hwang, “Multi-objective scheduling of many tasks in cloud
platforms,” Future Generation Computer Systems, Volume 37, Pages 309-320, ISSN 0167-739X, ,
July 2014. Article (CrossRef Link).

http://dx.doi.org/10.1016/j.future.2011.06.001
http://dx.doi.org/10.1016/j.jss.2015.03.007
http://dx.doi.org/10.1016/j.future.2013.09.006

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 57

[4] Y. Laili, F. Tao, L. Zhang, Y. Cheng, Y. Luo, B. R. Sarker, “A Ranking Chaos Algorithm for dual
scheduling of cloud service and computing resource in private cloud,” Computers in Industry,
Volume 64, Issue 4, Pages 448-463, ISSN 0166-3615, May 2013. Article (CrossRef Link).

[5] W. Li, J. Wu, Q. Zhang, K. Hu, J. Li, “Trust-driven and QoS demand clustering analysis based
cloud workflow scheduling strategies,” Cluster Computing, Volume 17, Issue 3, 1013-1030, 2014.
Article (CrossRef Link).

[6] F. Satoh, H. Yanagisawa, H. Takahashi, T. Kushida, "Total Energy Management System for Cloud
Computing," in Proc. of 2013 IEEE International Conference on Cloud Engineering (IC2E),
pp.233, 240, 25-27 March 2013. Article (CrossRef Link).

[7] A. Alnowiser, E. Aldhahri, A. Alahmadi, M. M. Zhu, "Enhanced Weighted Round Robin (EWRR)
with DVFS Technology in Cloud Energy-Aware," in Proc. of 2014 International Conference on
Computational Science and Computational Intelligence (CSCI), pp.320,326, 10-13 March 2014.
Article (CrossRef Link).

[8] R. Martin, L. David, A. Taleb-Bendiab, "A Comparative Study into Distributed Load Balancing
Algorithms for Cloud Computing,” in Proc. of waina, 2010 IEEE 24th International Conference
on Advanced Information Networking and Applications Workshops, 551-556, 2010.
Article (CrossRef Link).

[9] S. Nakrani, C. Tovey, “On Honey Bees and Dynamic Server Allocation in Internet Hosting
Centers,” Adaptive Behavior, 12, pp: 223-240, 2004. Article (CrossRef Link).

[10] Z. Papazachos, H. Karatza, “The impact of task service time variability on Gang scheduling
performance in a two-cluster system,” Simulation Modelling Practice and Theory, 17:1276–1289.
Article (CrossRef Link).

[11] H. Karatza, “Performance of Gang scheduling policies in the presence of critical sporadic jobs in
distributed systems,” in Proc. of symp perform evaluation of comp telecommun syst 2007, San
Diego, CA, pp. 547–554, 2007. Article (CrossRef Link).

[12] H. Karatza, “Performance of Gang scheduling methods in a parallel system,” Simulation
Modelling Practice and Theory, 17:430–441. Article (CrossRef Link).

[13] Z. C. Papazachos, H. Karatza, "Gang scheduling in multi-core clusters implementing migrations,"
Future Generation Computer Systems, 27(8): 1153-1165. Article (CrossRef Link).

[14] I. Moschakis, H. Karatza, "Evaluation of gang scheduling performance and cost in a cloud
computing system," The Journal of Supercomputing, 59(2): 975-992. Article (CrossRef Link).

[15] N. Cordeschi, M. Shojafar, E. Baccarelli, "Energy-saving self-configuring networked data
centers," Computer Networks, 57.17, 3479-3491, 2013. Article (CrossRef Link).

[16] N. Cordeschi, M. Shojafar, D. Amendola, E. Baccarelli, "Energy-efficient adaptive networked
datacenters for the QoS support of real-time applications," The Journal of Supercomputing, 71.2,
448-478, 2015. Article (CrossRef Link).

[17] L. Liu, G. Xie, L. Yang, R. Li, “Schedule Dynamic Multiple Parallel Jobs with
Precedence-Constrained Tasks on Heterogeneous Distributed Computing Systems,” in Proc. of
2015 14th International Symposium on Parallel and Distributed Computing (ISPDC), pp.130 –
137, June 29 2015-July 2 2015. Article (CrossRef Link).

[18] S. Prabhakaran, M. Neumann, S. Rinke, F. Wolf, “A Batch System with Efficient Adaptive
Scheduling for Malleable and Evolving Applications,” in Proc. of 2015 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 25-29, Page(s):429 - 438, May 2015.
Article (CrossRef Link).

[19] K. Oh-Heum, C. Kyung-Yong, “Scheduling parallel tasks with individual deadlines,” Theoretical
Computer Science, Volume 215, Issues 1–2, Pages 209-223, ISSN 0304-3975, 28 February 1999.
Article (CrossRef Link).

[20] J. G. Barbosa, B. Moreira, “Dynamic scheduling of a batch of parallel task jobs on heterogeneous
clusters, Parallel Computing,” Volume 37, Issue 8, Pages 428-438, ISSN 0167-8191, August 2011.
Article (CrossRef Link).

[21] W. Wang,Y. Chang,W. Lo,Y. Lee, “Adaptive scheduling for parallel tasks with QoS satisfaction
for hybrid cloud environments,” The Journal of Supercomputing, Volume 66, Issue 2, pp 783-811,
2013. Article (CrossRef Link).

http://dx.doi.org/10.0.3.248/j.compind.2013.02.008
http://dx.doi.org/10.0.3.239/s10586-013-0340-1
http://dx.doi.org/10.1109/IC2E.2013.46
http://dx.doi.org/10.1109/CSCI.2014.62
http://dx.doi.org/10.1109/WAINA.2010.85
http://dx.doi.org/10.1177/105971230401200308
http://dx.doi.org/10.1016/j.simpat.2009.05.002
http://eia.udg.es/SPECTS2007/accepted/118.html.
http://dx.doi.org/10.1016/j.simpat.2008.10.001
http://dx.doi.org/10.1016/j.future.2011.02.010
http://dx.doi.org/10.1007/s11227-010-0481-4
http://dx.doi.org/10.1016/j.comnet.2013.08.002
http://dx.doi.org/10.1007/s11227-014-1305-8
http://dx.doi.org/10.1109/ISPDC.2015.22
http://dx.doi.org/10.1016/S0304-3975(97)00178-3
http://dx.doi.org/10.1016/j.parco.2010.12.004
http://dx.doi.org/10.1007/s11227-013-0890-2

58 Hao et al.: Parallel task scheduling under multi-Clouds

[22] T. He, S. Chen, H. Kim, L. Tong, K. Lee, “Scheduling Parallel Tasks onto Opportunistically
Available Cloud Resources,” in Proc. of 2012 IEEE 5th International Conference on Cloud
Computing (CLOUD), Page(s): 180 – 187, 2012. Article (CrossRef Link).

[23] D. Oliveira, K. A. C. S. Ocaña, F. Baião, M. Mattoso, “A Provenance-based Adaptive Scheduling
Heuristic for Parallel Scientific Workflows in Clouds,” Journal of Grid Computing, Volume 10,
Issue 3, pp 521-552, 2012. Article (CrossRef Link).

[24] Y. Hao, “Enhanced resource scheduling in Grid considering overload of different attributes,” KSII
Transactions on Internet and Information Systems, Vol.10 No.3, 1071-1090, 2016.
Article (CrossRef Link).

[25] M. S. Squillante, F. Wang, M. Papaefthymiou, "Stochastic analysis of gang scheduling in parallel
and distributed systems," Performance Evaluation, 27–28(0): 273-296, 1996.
Article (CrossRef Link).

[26] C. L. Morefield, "Application of 0-1 integer programming to multi-goal tracking problems," IEEE
Transactions on Automatic Control, 22(3): 302-312, 1977. Article (CrossRef Link).

[27] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, I. Stoica, “Delay Scheduling:
A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling,” In EuroSys 10,
2010. Article (CrossRef Link).

[28] Amazon Web Services LLC, Amazon elastic compute cloud (EC2), 2009. Article (CrossRef Link).
[29] Y. Hao, G. Liu，R. Hou, Yongsheng Zhu, Junwen Lu. “Performance Analysis of Gang

Scheduling in a Grid,” Journal of the Network and Systems Management, Volume 23, Issue 3, pp
650-672, July 2015. Article (CrossRef Link).

[30] Y. Hao, G. Liu, “An Evaluation of Nine Heuristic Algorithms with Data-intensive Jobs and
Computing-intensive Jobs in a Dynamic Environment,” IET software, Value 9，No. 1, Page 7-16,
2015. Article (CrossRef Link)

[31] Y. Hao, G. Liu, N. Wen, “An enhanced load balancing mechanism based on deadline control on
GridSim,” Future Generation Computer Systems, Volume 28, Issue 4, Pages 657-665, ISSN
0167-739X, April 2012. Article (CrossRef Link).

[32] F. Ramezani, J. Lu, J. Taheri, F. K. Hussain, “Evolutionary algorithm-based multi-objective task
scheduling optimization model in cloud environments,” World Wide Web-internet & Web
Information Systems, 18(6), 1737-1757, 2015. Article (CrossRef Link).

[33] Y. Hao, L. Wang, M. Zheng, “An adaptive algorithm for scheduling parallel jobs in meteorological
Cloud,” Knowledge-Based Systems, Volume 98, Pages 226-240, ISSN 0950-7051, 15 April 2016.
Article (CrossRef Link).

http://dx.doi.org/10.1109/CLOUD.2012.15
http://dx.doi.org/10.1007/s10723-012-9227-2
http://dx.doi.org/10.3837/tiis.2016.03.007
http://xueshu.baidu.com/s?wd=author%3A%28Marios%20Papaefthymiou%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://dx.doi.org/10.1016/S0166-5316(96)90031-0
http://dx.doi.org/10.1109/CDC.1975.270725
http://dx.doi.org/10.1145/1755913.1755940
http://aws.amazon.com/cn/ec2/
http://dx.doi.org/10.1007/s10922-014-9312-x
http://dx.doi.org/10.1049/iet-sen.2014.0014
http://dx.doi.org/10.1016/j.future.2011.10.010
http://dx.doi.org/10.1016/j.knosys.2016.01.038

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 59

Yongsheng Hao received his MS Degree of Engineering from Qingdao University in
2008. Now, he is an engineer of Information management department, Nanjing
University of Information Science & Technology. His current research interests include
distributed and parallel computing, mobile computing, Grid computing, web Service,
particle swarm optimization algorithm and genetic algorithm. He has published 16 papers
in international conferences and journals.

Mendan Xia received her MS Degree of Arts from Nanjing Normal University in 2006.
Now, she is an English teacher in School of Languages and Cultures, Nanjing University
of Information Science & Technology. Her current research interests include English
Language Teaching and Cross-cultural Communication.

Na Wen receives her Ph.D. degree and MS degree from Ocean University of China, P.R.
China in 2009 and in 2006 respectively. Now, she is a researcher of college
ofAtmospheric Science, Nanjing University of Information Science & Technology. His
current research focuses on meteorology research.

Rongtao Hou received his PHD Degree of Computer science from Northeastern
University in 2001. Now, he is a professor of School of computer and software, Nanjing
University of Information Science & Technology. His current research interests include
distributed and parallel computing, mobile computing, weather forecast model and so on.

Hua Deng received his MS Degree of Engineering from NUIST in 2005. Now, he is an
engineer of College of Atmospherics Science, Nanjing University of Information Science
& Technology. His current research interests include distributed and parallel computing,
weather model, supercomputing.

Lina Wang received the B.S. degree in computer application from Nanjing Institute of
Meteorology, Jiangsu, China in 2001 and the M.S. degree in system analysis and
integration from Nanjing University of Information Science and Technology, Jiangsu,
China in 2004. She received the Ph.D in computer application from Nanjing University of
Aeronautics and Astronautics, Jiangsu, China in 2016. Currently, her main research
interests are data mining and computer-network-technology.

60 Hao et al.: Parallel task scheduling under multi-Clouds

Qin Wang received his MS Degree of Engineering from Nanjing normal university in
2005. Now, he is an engineer of Information management department, Nanjing
University of Information Science & Technology. His current research interests mainly
focus on the resource scheduling on different platforms.

