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Abstract 
 

In the Cloud, for the scheduling of parallel jobs, there are many tasks in a job and those tasks 
are executed concurrently on different VMs (Visual machines), where each task of the job will 
be executed synchronously. The goal of scheduling is to reduce the execution time and to keep 
the fairness between jobs to prevent some jobs from waiting more time than others. We 
propose a Cloud model which has multiple Clouds, and under this model, jobs are in different 
lists according to the waiting time of the jobs and every job has different parallelism. At the 
same time, a new method-ZOMT (the scheduling parallel tasks based on ZERO-ONE 
scheduling with multiple targets) is proposed to solve the problem of scheduling parallel jobs 
in the Cloud. Simulations of ZOMT, AFCFS (Adapted First Come First Served), LJFS 
(Largest Job First Served) and Fair are executed to test the performance of those methods. 
Metrics about the waiting time, and response time are used to test the performance of ZOMT. 
The simulation results have shown that ZOMT not only reduces waiting time and response 
time, but also provides fairness to jobs. 
 
 
Keywords: parallel tasks, 0-1 integer programming, Virtual machines, multi-Clouds  
 
 
 
 
 

 
 
https://doi.org/10.3837/tiis.2017.01.003                                                                                                                     ISSN : 1976-7277 

https://doi.org/10.3837/tiis.2017.01.001


40                                                                                                               Hao et al.: Parallel task scheduling under multi-Clouds 

1. Introduction 

The Cloud is a type of parallel and distributed system consisting of a collection of 
inter-connected and virtualized computers that are dynamically provisioned and presented as 
one or more unified computing resource(s) based on service-level agreements established 
through negotiation between the service providers and consumers [1]. In recent years, more 
and more attention has been given to Cloud market/SLA(service level agreement) 
management, Green Clouds/resource efficiency, Cloud resource management, Cloud 
programming models and so on [2]. 

More and more resources and systems are migrated to Cloud environment. The importance 
of scheduling methods is apparent in Cloud computing. It not only decides the performance of 
the Cloud system, but also influences the satisfaction of the Cloud user. Some scheduling 
methods have been proposed to solve the problem.  

Z. Fan et al. extend the OO (ordinal optimization) scheme to meet the special demands from 
cloud platforms that apply to virtual clusters of servers from multiple data centers [3]. A new 
RCO (Ranking Chaos Optimization) is proposed to schedule large-scale Cloud resources [4]. 
With the consideration of large-scale irregular solution spaces, a new adaptive chaos operator 
is designed to traverse wide spaces within a short time. Besides, dynamic heuristics and 
ranking selection are introduced to control the chaos evolution in the proposed algorithm. 

L.Wenjuan et al. add trust management to check workflows QoS and propose a novel 
customizable cloud workflow scheduling model [5]. It divides workflow scheduling into two 
stages: the macro multi-workflow scheduling as the unit of cloud user and the micro single 
workflow scheduling. Trust mechanism is used to enhance the system performance in different 
aspects. Some methods also pay attention to energy consumption in the Cloud. F. Satoh et al. 
develop a Cloud energy management system with sensor management functions, with an 
optimized VM allocation tool to minimize energy consumption at multiple data centers [6]. A. 
Alnowiser et al. propose an energy efficient job scheduling approach based on a modified 
version of weighted round robin scheduler that incorporates VMs reuse and live VM migration 
without compromising the SLA (Service Level Agreement) [7]. Martin et al. investigate three 
possible distributed solutions for resource scheduling methods in Cloud [8]: approaches 
inspired by honeybee foraging behavior [9], biased random sampling and active Clustering [9]. 
N. Cordeschi et al. [15] propose a scheduling method to minimum-energy which takes account 
of those aspects at the same time: task sizes, computing rates, communication rates and 
communication powers. Furthermore, considering the hard per-job delay-constraints, N. 
Cordeschi et al. [16] propose a scheduling method to minimize the overall 
computing-plus-communication energy consumption in VNetDC (virtualized networked data 
center). 

The scheduling of parallel jobs is more difficult in comparison with the scheduling of 
non-parallel jobs. The scheduling goal is to maximize the performance of the system and to 
minimize unnecessary delays; at the same time, it provides fairness for resource users. The 
task of the same job can be allocated to different VMs at the same time and those tasks will be 
executed synchronously. In this way, we avoid that a task waits other tasks of the same job. 
And in this paper, we suppose every job has some parallel tasks. The scheduling of parallel 
jobs has been widely studied in the past in distributed system [11, 19], cluster system [10, 13, 
20], parallel system [14], Grid and Cloud Computing [14, 21, 22, 23, 24]. 

Because parallel tasks of a job need to get data from other tasks or provides data for others’ 
tasks frequently [10], we need to find a way to assign those tasks that belong to the same job as 
soon as possible, and to reduce the execution time. We also need to dynamically initial VMs 
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(or hosts) to satisfy the system requirement. The main contributions of the paper include: (1) 
we give a framework for the scheduling of parallel tasks under multi-Clouds; and then (2) we 
propose our scheduling method based on our analysis of the goals and the requirements; lastly, 
(3) simulations are executed to test our method under different conditions. 

In the simulation, we give a comparison between our method and AFCFS (Adapted First 
Come First Served) and LJFS (Largest Job First Served), because most scheduling methods of 
parallel jobs in different areas [10~14] are AFCFS and LJFS, or an extension of them. Fair 
Scheduler [27] has been widely used in the Cloud, so we give a comparison between Fair 
Scheduler and our method. Fair Scheduler ensures the job shares more resources if there are 
some resources having no jobs. The simulations are executed in a simulation environment and 
on a real log. 

This paper focuses on the scheduling of parallel jobs in Cloud computing, and proposes a 
scheduling method-ZOMT. The structure of this paper is as follows. Section 2 is the related 
work of scheduling methods of parallel jobs. Section 3 introduces details of workload models. 
Section 4 proposes our scheduling method based on the analysis of the goals and the 
requirements. Section 5 presents the parameters of the simulation and discusses the result in 
the simulation. Finally, in Section 6, we provide some concluding remarks and suggestions for 
our future work. 

2. Related Work 
There are many traditional scheduling methods for parallel jobs in different systems. Gang 
scheduling is a special case of parallel scheduling and many methods of Gang scheduling have 
been evaluated by researchers. They are adapted first come first served (AFCFS) [12, 13, 14], 
largest job first served (LJFS) [12, 13, 14] (or LGFS, in fact, A Gang is a big job with some 
tasks), queue insertions dependent largest job first served (QLJFS) [12], periodic largest job 
first served (PLJFS) [12]. AFCFS schedules the job if the number of empty VMs is greater 
than the parallelism of the job. When the number of empty VMs is less than the parallelism of 
the job in the waiting queue, then the AFCFS policy gives up the job and considers the next job 
until it finds a job that can be executed. With LJFS, according to the increasing order of the 
parallelism of the job, jobs are placed in the queue (jobs with large parallel jobs are placed 
ahead in the queue). All jobs are searched one by one, and the first job starts execution if the 
number of VMs is more than the parallelism of the job. PLJFS policy rearranges the 
scheduling order of jobs only at the end of predefined time period t. At the end of a period, the 
scheduler center recalculates the priorities of all jobs in the queue and sorts them in the 
decreasing order of the parallelism of the job. QLJFS rearranged the scheduling order 
according to the LJFS method when every job was inserted in the waiting queue. In Cloud, 
considering the migrations of VM, adapted first come first served with migrations 
(AFCFSwM) [15] and largest Gang first served with migrations (LGFSwM) [13] are proposed. 
AFCFSwM algorithm uses AFCFS as the local scheduling method in each system (Cloud, 
Grid and so on), and at the same time, it also implements local and server migrations. The 
same as AFCFSwM, LGFSwM is the migration version of the LGFS. At the same time, Gang 
scheduling also has been widely studied in many areas including the Clusters [10], the 
distributed system [11, 17], multi-core system[13], parallel system [12, 18] Grid and Cloud 
Computing [14]. Table 1 gives a summary of the traditional methods (or based on those 
traditional methods) that have been discussed in different papers. 
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Table 1. The scheduling method in different papers in different environments 

 Distributed 
system 

Multi-core 
system 

Parallel 
system Cluster Grid 

Cloud 
AFCFS [11] [13] [12] [10] [14] 
LJFS [11] [13] [12] [10] [14] 

AFCFSwM - - - - [13,15] 
LGFSwM - - - - [13,15] 

 
In fact, considering more aspects of the scheduling of parallel jobs, more methods have been 

given by researchers. Z. Fan et al. extend the OO (ordinal optimization) scheme to meet the 
special demands from cloud platforms that apply to virtual clusters of servers from multiple 
data centers [3]. In [19], the scheduling goal is to maximize the number of finished jobs that 
have been completed before their deadlines. Considering the scheduling of non-malleable 
parallel tasks and malleable tasks specially, they propose two polynomial-time approximation 
algorithms for different tasks. EDF (earliest deadline first) is used to schedule non-malleable 
tasks and an extension of EDF is used to schedule malleable tasks. 

G. B. Jorge et al. try to solve the problem of minimizing the makespan of a batch of jobs 
with different system loads [20]. They schedule the resource dynamically. When a new job 
coming that may result in changing the assigned resources to other jobs during its execution. 
The scheduling method includes two steps: a scheduling strategy and a scheduling algorithm. 
An adaptation of the HEFT (Heterogeneous Earliest-Finish-Time) algorithm is proposed to 
solve the problem of scheduling of parallel tasks in heterogeneous environment. 

The AsQ (Adaptive Scheduling with QoS Satisfaction algorithm) [21] tries to find a 
resource scheduling scheme for different aspects: the utilization rate of the private cloud, the 
renting expense, and the task finish time are optimized and so on. They take the scheduling of 
the parallel tasks as a variation of the multi-dimension multi-choice knapsack problem and 
they develop a fast scheduling strategy which ensures the cost and the deadline constraints. 

H. Ting et al. consider the problem of scheduling of parallel tasks of different priorities [22]. 
Low-priority tasks may be assigned to underutilized computation resources which have been 
assigned to some high-priority tasks. But this may result in some tasks waiting more time and 
some servers migrating dynamically. The goal of scheduling is to allocate the low-priority 
tasks to low load server resources while minimizing the combined cost of waiting and 
migration. They solve the scheduling problem as restless MAB (Multi-Armed Bandits). 

Scheduling parallel scientific workflows in the cloud is a very complex task since the 
scheduling may have different goals and criterions. In [23], the authors introduce an adaptive 
scheduling heuristic for parallel execution of scientific workflows in the cloud that is based on 
three criterions: total execution time (makespan), reliability and financial cost. They propose a 
weighted cost function and an adaptive scheduling heuristic to explore the dynamicity of 
clouds while scheduling Cloud activities to several VMs in a virtual cluster. They not only 
implement the cost model but also evaluate the scheduling algorithms in SciCumulus. 

In the paper, we only pay attention to AFCFS and LJFS in the simulation, because most of 
works of parallel scheduling are based on them and the past works also show that they (or one 
of them) have better performance (especially AFCFS). For the scheduling of parallel tasks, 
migrations may bring many problems for the scheduling, because one job has many tasks 
which are executed at the same time, and one migration of a VM not only influences the task, 
but also influences the tasks which belong to the same job, so we do not take account of the 
migrations of the parallel tasks in the paper. Though we do not take account of migrations of 
VMs, simulations evaluate the performance of our method when the VM can shut off or 
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migrate under some assumptions. 

3. System model 
Tasks of a job are required to send and receive data very frequently in the same jobs. Thus, the 
number of VMs required by the job and its parallelism have the same values. In the model 
under our study, parallelisms of those jobs are random numbers following the discrete uniform 
distribution and the maximum of the parallelism is maxplism. The mean time between jobs’ 
arriving is exponentially distributed with a mean of 1/λ. There exists no correlation between 
service time and the parallelism of jobs. For example, a job with large parallelism does not 
mean to must have a long service time. A large job (We call it LPJ in the following paper) 
refers to the job with big value of parallelism. It needs more processors at the same time, and 
this does not mean that it needs more time than others. 

According to the parallelism of the job, there are two kinds of jobs: small parallel jobs (SPJ) 
and large parallel jobs (LPJ) [12]. The parallelism of SPJ has a scope of [1, midv] and its 
probability is q. midv is the maximum value of the parallelism of SPJ. LPJ has the parallelism 
in the range of [midv+1, midl] and its probability is 1-q. midl is the maximum value of the 
parallelism of LPJ. The two kinds have the same scopes. In other words, midl is double of midv. 
So, we can get the average parallelism (AP) of every job as 

= *(1+ )/2+(1- )*(1 )/2AP q midv q midv midl+ +                         （1） 

There are two kinds of jobs according to the parallelism of jobs: SPJ or LPJ (Fig. 1). They 
arrive at the average rate of λ. RS (Resource Schedule) is in charge of the resource scheduling. 
As in [3], RS controls the application-to-VM level and it assigns tasks of a given job to 
different VMs at the same time. The same model is also taken by [14]. 

4. Scheduling method for parallel tasks in multi-Clouds 

4.1 job routing 
In this paper, our routing method fills the same time empty queue (FSTEQ, see Algorithm 1). 
Every data center registers the relative data with the details of resources to the RS. RS manages 
the resource and monitors those states of resources. For the job jtemp, when it comes, first of all, 
it is inserted into the waiting list wlist (lines 1-2, Algorithm 1, same in the following paper). 
RS (Resource scheduler) is in charge of resource scheduling which takes FSTEQ algorithm for 
the system. FSTEQ checks the waiting time (wttemp) of every job, and if the value is more than 
time1, the job is inserted into the scheduling list slist. time1 ensures that every job does not 
wait too much time. Then, if there are more places for more jobs, FSTEQ checks every job in 
the waiting list wlist and inserts some of them that can be inserted into slist. Tasks of the same 
job must be assigned to different queues in the same positions since the scheduling requires 
that there exists a one-to-one mapping of tasks to VMs (Fig. 1). See job(i), T(1), T(pos) and 
T(j) are the tasks of job(i). RS checks the resource utilization rate and the finished rate of jobs 
periodically and decides to initiate (or stop) a new VM or a new Cloud server. 

Algorithm 1 gives the details of the FSTEQ. Lines 1~5 check whether there are places for 
the new coming parallel jobs. “checkempty(slist)” returns “true” when there are enough 
resources for the job (lines 1~2, Algorithm 1); otherwise, it returns “false” (lines 3~5, 
Algorithm 1). If “checkempty(wlist)” returns “true”, the job will be placed in wlist (lines 4, 
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Algorithm 1).The function of “ Insertlist(𝑗𝑡𝑒𝑚𝑝,𝑤𝑙𝑖𝑠𝑡) ” is to insert the job 𝑗𝑡𝑒𝑚𝑝  to wlist and 
returns the new wlist. Then, we will check the waiting time if the jobs in the wlist, and if the 
waiting time is more than time1, the job will be inserted to slist (lines 6~12). Furthermore, if 
there are more places for the jobs in wlist, we will insert more jobs to slist as the AFCFS 
(Adaptive First comes first service) policy. At last, the system checks the system load 
condition to decide whether it needs to initiate (or stop) a new VM or a new Host (line 20). 

… …T(pos)… …

Job(i)

T(1) T(pos)

... ...
T(j)

...

VM（1） VM（temp） VM（j） VM（vmmax）... ......

strategies

AFCFS
LJFS

ZOMT
QLJFS 
PLJFS

...

wlist( time1)

slist( time2)

RS

FSTEQ

Initiate VM
(Stop VM)

Job(i)

T(j)T(1)

 

Fig. 1.  FSTEQ system model 

 

Algorithm 1: FSTEQ ( )  
1. If checkempty(wlist)  

//Checks there are places in wlist, and if there are places, jtemp is inserted into 
wlist 

2.   𝑠𝑙𝑖𝑠𝑡 = Insertlist(𝑗𝑡𝑒𝑚𝑝,𝑤𝑙𝑖𝑠𝑡) 
3. Else 
4.   𝑤𝑙𝑖𝑠𝑡 = Insertlist(𝑗𝑡𝑒𝑚𝑝,𝑤𝑙𝑖𝑠𝑡) 

// otherwise, the job is inserted into wlist 
5. Endif 
6.   For 𝑗𝑡𝑒𝑚𝑝 ∈ 𝑤𝑙𝑖𝑠𝑡 
7.     If wttemp >time1 
8.         If Checkempty(slist) 
9.        𝑠𝑙𝑖𝑠𝑡 = Insertlist(𝑗𝑡𝑒𝑚𝑝, 𝑠𝑙𝑖𝑠𝑡) 

10.    Endif 
11.   Endif 
12. Endfor 
13. If Checkempty(slist) 
14.  For 𝑗𝑡𝑒𝑚𝑝 ∈ 𝑤𝑗 
15.     If Checkempty(slist) 
16.       𝑠𝑙𝑖𝑠𝑡 = Insertlist(𝑗𝑡𝑒𝑚𝑝, 𝑠𝑙𝑖𝑠𝑡)         //Insert jbtemp  into the scheduling list slist; 
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17.     Endif 
18.   Endfor 
19. Endif 
20. Check the system load condition to decide whether it needs to initiate (or stop) a 

new VM or a new host. 
 
To enhance the utilization ratio of resources, we can stop some VMs when we find the 

resources are enough and some resources always cannot get tasks, in others words, when the 
supply of resources is more than the demand of resources. On the contrary, if there are many 
jobs cannot be finished, we can initiate some VMs for the job (Line 16). Suppose that the 
average arrival rate of jobs is λ and the average parallelism is AP, then the number of VMs that 
we need is needvm: 

 *needvm APλ=  

First of all, we initiate all the 120 VMs. We only initiate 120 VMs because the maximum of 
the leasing VMs of a host of a Cloud center is 120 [28]. Then, according to the value of the 
jobs that have been finished, we get the value of λ and AP.  To ensure the system performance, 
we initiate more VMs than we need. The number of initiated VMs is inivm (1>α >0): 

 * *(1 )inivm APλ α= +  

Too many VMs in the same host reduce the performance of  every VM in the host. A host 
(or server) has a maximum number of VMs. In Fig. 1, if the online server has more ability to 
initiate a new VM, we will use the server until it has no ability to support a new VM; otherwise, 
we will initiate a new host for the initialization of the new VM. A simple process for the server 
and VM initial is as follows: 

(1) For the new VM cv, computer checks every host with the relative attributes whether 
they can satisfy cv. Those attributes include: virtualization software, CPUs type and 
computational capabilities, shared hardware, the usage of shared storage and so on. We sort 
those hosts according to the ascending order of the leaving attributes (CPU, memory, and 
bandwidth). 

(2) If we can get hosts in step 1, we initial cv in the first host, otherwise, we go to step (4); 
(3) If a host has not been assigned any tasks for long time, we will shut the host to reduce 

energy consumption; 
(4) If we cannot get host in step 2, we initiate a host; 
(5) Repeat steps 1-5 for the new request of VM. 

4.2 job scheduling 
In section 2, we have introduced other scheduling methods. And in this section, we will 
propose our scheduling method-ZOMT.  

Let vmmax be the maximum number of VMs. The parallelism of jobi is pli. The scheduling 
result of jobi is sci, if sci equals to 1, the job has been scheduled; otherwise, the job has not been 
scheduled yet. The waiting time of jobi is wti. 

If some jobs wait more time than others, it is unfair to those jobs. So we set wte to denote the 
longest time that the job waits in the queue (See Fig.1, it is time2). If the waiting time is more 
than wte, the job is scheduled immediately. Suppose those jobs whose waiting time is more 
than wte are listed in the list of olist and others are listed in the list of wlist: 
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olist={job1, job2, job3,…,jobonum} 

wlist={job1, job2, job3,…,jobwnum} 

The number of VMs that is requested by the jobs in olist is 

1

onum

temp
temp

sumo pl
=

= ∑                                                         (2) 

After this scheduling of olist, the number of leaving VMs is  

lnum=vmmax-sumo 

Then the problem is how to schedule the job in wlist with lnum VMs. The scheduling must 
meet the condition: 

1
( )

wnum

temp temp
temp

pl sc lnum
=

× ≤∑                                              (3) 

At the same time, there are two goals in the scheduling: (1) to maximize the total value of 
parallelisms of all scheduled jobs, most resources have been used by jobs (2) to maximize the 
waiting time of all scheduled jobs, we can reduce the jobs’ waiting time: 

1

1

(1) max( ( ))

(2) max( ( ))

wnum

temp temp
temp

wnum

temp temp temp
temp

pl sc

pl wt sc

=

=


×



 × ×


∑

∑
 

The coefficients are listed as: 

oarray=[pl1.*wt1., … , pltemp.*wttemp, … , plwnum*wtwnum ] 

plarray=[pl1, … , pltemp, …,  plwnum] 

scresult=[sc1, … ,sctemp, …,  scwnum ] 

oarray, plarray, and scresult are the sets of the weighted waiting time of those jobs, the 
parallelisms and the scheduling result, respectively. 

We suppose the two goals have the same weight to the system, so the goal becomes: 

1 1
(0.5* ( 0.5* ( ))

= =

= × + × ×∑ ∑
wnum wnum

temp temp temp temp temp
temp temp

tempmax pl sc pl wt sc                (4) 

An implied condition is that we should schedule as many as possible of the number of VMs 
to enhance the resource utilization efficiency. Let us suppose that at least rratio resources 
(ratio) have been assigned to different jobs. 𝑠𝑐𝑡𝑒𝑚𝑝 represents that whether the job has been 
assigned. If 𝑠𝑐𝑡𝑒𝑚𝑝 equals 1, it has been assigned to a resource, otherwise, it waits more time. 
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There must exist:   

1
( )

wnum

temp temp
temp

pl sc rratio lnum
=

× ≥ ×∑                                          (5) 

i.e. 

1
( )

wnum

temp temp
temp

pl sc rratio lnum
=

− × ≤ − ×∑                                      (6) 

rratio has a range of [0, 1]. 
From equations (4), (5), (6), the scheduling becomes a 0-1 integer programming with many 

conditions and one goal, which can be solved with enumeration (some other methods also can 
be used to solve the problem). Tools including MATLAB provide the method to solve the 
problem and the method is bintprog (http://www.hackchina.com/en/r/153791/bintprog.m__html). 
oarray is the coefficient of the objective function. plarray and -plarray are the coefficient of 
getmax. Formula (3) and (6) are the constraints, and (4) is the objective function.  

The algorithm of our proposed scheduling method is given as follows: 
 

Algorithm 2: ZERO-ONE scheduling in One Cloud center 
Input: olist={job1, job2, job3,…,jobonum} 
          wlist={job1, job2, job3,…,jobwnum} 

tlvm=vmmax; 
Output：scresult={value1,value2, value3,…,valuetemp,…, valuewnum} 
1. For i=1:onum 
2.   If tlvm >= jobi..pl 
3.     Scheduling( jobi) ; 
4.     tlvm = tlvm -jobi..pl; 
5.   Endif 
6. Endfor 
7. [scresult, fval ]=getmax( tempmax, [ plarray; - plarray ], [tlvm, rratio* tlvm] ) 
8. For(temppos=1:wnum) 
9.   If ( scresult (temppos)==1) 
10.     Scheduling( jobtemppos) ; 
11.     tlvm = tlvm - jobtemppos..pl; 
12.   Endif 
13. Endfor 
14. If sum(scresult)==0 
15.   Scheduling all jobs as AFCFS 
16. Endif 
17. For i=1:wnum 
18.    If scresult >= jobi..pl && scresult(temppos)==0 ; 
19.       Scheduling (jobi) ; 
20.       tlvm = tlvm -jobi..pl; 
21.    Endif 
22. Endfor 

 
 

http://www.hackchina.com/en/r/153791/bintprog.m__html
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Lines 1-6 are the scheduling of the jobs that have waited for a long time, i.e., the jobs in 
“Scheduling list”(Fig. 1). We use AFCFS policy for those jobs. After scheduling, all jobs in 
slist are assigned to the resources. Line 7 is ZONE-ONE integer programming with two 
requirements and two goals. getmax returns the goal function (Formula 4) with two conditions 
(Formula (3, 6)). The target is formula (4). The two conditions requirements are formula (3) 
and (6). scresult is an array of 1*wnum. If scresult[temp] is equal to 1, the jobtemp is scheduled 
by the Cloud; otherwise, the job cannot be scheduled and waits for the next time scheduling 
(lines 8-13). fval is the minimum of formula (4) and it is the value of the target function, which 
is the maximum of the multiple target functions. If 0-1 integer programming has no answer to 
the problem, the summation of sresult equals 0, we schedule the system as AFCFS. Sometimes, 
after the 0-1 integer programming, some resources may not be assigned to any jobs and we can 
schedule more jobs again as AFCFS (lines 17-22). We schedule resources in this way to 
enhance resource utilization efficiency. 

The maximum of the VMs of the host of a Cloud center is vmmax=120 [28]. So, we have no 
efficiency problem to solve the 0-1 integer problem in the scheduling in one host. bintprog is 
used to solve the problem of ZONE-ONE integer programming in matlab and it can be used in 
our solution to take place of “getmax” function. We test “bintprog” in our simulation 
environment, the maximal value of executing time is less than 10 seconds, which is a very low 
value to the execution time of the job in the Cloud. The job in the Cloud always needs many 
minutes even many hours. So, for a Cloud center, we don’t need to take account of the 
execution time of Algorithm 2. 

But for a real Cloud system, there are many servers and every server has many VMs, 
Algorithm 2 has an efficiency problem in the real system. To overcome this shortcoming, we 
should find a method with higher efficiency for the scheduling in the Cloud center. Algorithm 
3 is the new method. 

 
Algorithm 3: ZOMT() 
Input:olist={job1, job2, job3,…,jobonum} 

wlist={job1, job2, job3,…,jobwnum}; 
Output：jscresult={value1,value2, value3,…,valuetemp,…, valuewnum}; 
1. Sort(olist); 

//Sort jobs according to the descending order of parallelisms; 
2.   For i=1:onum 
3.     If tlvm >= jobi..pl 
4.       Scheduling( jobi) ;  
5.       tlvm = tlvm -jobi..pl; 
6.     Endif 
7.     If tlvm<120 
8.       initiate(tlvm); 
9.      Endif 
10.  Endfor 
11.  For temp=1:onum 
12.     For jt ∈ olist 
13.       If tlvm >= jt..pl 
14.         Scheduling(jt) ; 
15.         tlvm = tlvm - jt..pl; 
16.       Endif 
17.       If tlvm<120 
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18.     initiate(tlvm); 
19.       Endif 
20.     Endfor 
21.   Endfor 
22. While Empty(olist) 
23. Do  
24.     For temp=1:wnum 
25.       For jt ∈ wlist 
26.         If tlvm >= jt..pl 
27.           Scheduling(jt) ; 
28.           tlvm = tlvm - jt..pl; 
29.         Endif 
30.         If tlvm<120 
31.      initiate(tlvm); 
32.         Endif 
33.     Endfor 
34.   Endfor 
35.  While Empty(wlist) 
36. Algorithm 2() 

 
onum and wnum are the numbers of jobs in olist and wlist. olist and wlist are the sets of the 

jobs whose waiting time is more than the expected time and the jobs in the waiting list. jobi..pl 
is the parallelism of the job jobi. In Algorithm 3, lines 1-7 are scheduling the jobs whose 
waiting time is more than a fixed value, we take the AFCFS policy for those jobs, which is the 
same as Algorithm 2. We schedule jobs in olist first. olist is a set of jobs that wait for being 
scheduled, but those jobs can also wait yet. tlvm records the total number of VMs. First of all, 
we sort jobs in olist according to the parallelisms of the jobs (Line 1, algorithm 3, same in the 
following paper) and then we schedule those jobs according to the AFCFS policy. If the 
selected data center has no enough resources for the selected job,we will find a new data center 
which has the largest bandwidth between the selected data center and the new one. We 
selected the largest bandwidth because the bandwidth also influences the synchronization of 
the parallel tasks. “initiate(tlvm)” tries to find the new data center and it adds the resource 
fragment to the new data center (line 8; lines 19 and 33 have the same meaning). Then we 
schedule the jobs in wlist (lines 11~38). First of all, we also take AFCFS policy for the 
scheduling of the jobs in wlist. When there are resource fragments in the data center, we also 
add those resource fragments to a new data center (lines 24~37). We also select the new data 
center which has the largest bandwidth to the current selected Cloud data center. During the 
period, we check the requirement of leaving jobs to the number of VMs to see whether it is less 
than 120 ( line 30), and if the value is less than 120, we will use algorithm 2 to schedule the rest 
of jobs and VMs. The reason why we select 120 as a checkpoint: (1) A host (or server) of a 
Cloud center can initial the maximum number of VMs is mavmmax=120 [28]; (2) there are 
only a few seconds to get the result of 0-1 integer programming, and we have no efficiency 
problem under mavmmax=120 (Algorithm 2). 
 

4.3 Complexity analysis 
Suppose there are onum jobs in olist and wnum jobs in wlist. Our scheduling framework has 

three algirithms and the complexity is decided by the three algorithms: 



50                                                                                                               Hao et al.: Parallel task scheduling under multi-Clouds 

Algirithm 1 has a complexity of O(onum+wnum). 
The complexity of algorithm 2 is decided by the 0-1 integer programming. But in fact, the 

maximum of the number of VMs in a data center is a constant (such as 120) and the rest jobs in 
wlist is also less than the constant. So, the complexity of algorithm 2 is O(1) 

The complexity of algorithm 3 is decided by the main three steps: allocation of the jobs in 
olist, allocation of the jobs in wlist and Algorithm 2: 

For the allocation of jobs in olist, the sort of the jobs in olist is O(onumlog(onum)), lines 
2-10 are the AFCFS policy and they have a complexity of O(onum). So, the complexity of the 
first step is: 

O(𝑜𝑛𝑢𝑚 log(𝑜𝑛𝑢𝑚)) + O(𝑜𝑛𝑢𝑚)= O(𝑜𝑛𝑢𝑚 log(𝑜𝑛𝑢𝑚)) 
For the second step, lines 11~21 are also the AFCFS for the jobs in wlist, and the complexity 

of  the second step is O(𝑤𝑛𝑢𝑚). 
For the third step, the complexity is decided by Algorithm 2. 
So, the complexity of algorithm 3 is: 
O(𝑜𝑛𝑢𝑚 log(𝑜𝑛𝑢𝑚)) +  O(𝑤𝑛𝑢𝑚) + O(1) = O(𝑜𝑛𝑢𝑚 log(𝑜𝑛𝑢𝑚)) +  O(𝑤𝑛𝑢𝑚). 
So the complexity of our method is: 

O(𝑜𝑛𝑢𝑚 +𝑤𝑛𝑢𝑚) + O(1) + O(𝑜𝑛𝑢𝑚 log(𝑜𝑛𝑢𝑚)) +  O(𝑤𝑛𝑢𝑚) = 
O(𝑜𝑛𝑢𝑚 + 𝑤𝑛𝑢𝑚) + O(𝑜𝑛𝑢𝑚 log(𝑜𝑛𝑢𝑚)) 

Suppose there are n jobs in wlist and olist (𝑛 = 𝑜𝑛𝑢𝑚 +𝑤𝑛𝑢𝑚), the complexity of our 
method is O(𝑛 log(𝑛)). 

5. Simulations and Analysis 
All the parameters that we try to evaluate are given in Table 2. ART (Average Response Time) 
and AWRT (Average Weighted Response Time) are the average response time and average 
weighted response time of the finished jobs. AWT (Average Waiting Time) and AWWT are the 
average waiting time  and the average weighted waiting time of the finished jobs. SDRT 
(Standard deviation of waiting time) is sandard deviation of waiting time of the finished jobs 
and SDWWT (Standard deviation of weighted waiting time) is the standard deviation of 
weighted waiting time of the finished jobs which takes account of the parallelism of jobs. 
SDWT and SDWWT explain the fairness among jobs. Some jobs may wait more time than 
others. Formulas (7), (8) and (9) give the calculation methods of SDWT and SDWWT.      
 

𝑠𝑢𝑚𝑡𝑒𝑚𝑝 = � 𝑝𝑙𝑡𝑒𝑚𝑝 × (𝑤𝑡𝑡𝑒𝑚𝑝 𝑝𝑙𝑡𝑒𝑚𝑝⁄ − 𝐴𝑊𝑊𝑇)2    
𝑁

𝑡𝑒𝑚𝑝=1
                (7) 

𝑆𝐷𝑊𝑇 = �∑ (𝑤𝑡𝑡𝑒𝑚𝑝 − 𝐴𝑊𝑇)2𝑁
𝑡𝑒𝑚𝑝=1 𝑁⁄                                   (8)  

𝑆𝐷𝑊𝑊𝑇 = �𝑠𝑢𝑚𝑡𝑒𝑚𝑝 ∑ 𝑝𝑙𝑡𝑒𝑚𝑝
𝑁
𝑡𝑒𝑚𝑝=1⁄                                     (9) 

                           
We set midl=16 and vmmax=120 in formula (1). The maximum of VMs is vmmax, so 

λ<vmmax/AP                                                                (10) 
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We will evaluate the system when it has different ratios in different kinds of jobs, so we 
evaluate the system when the values of q are 0.25, 0.50, and 0.75 respectively. According to (1) 
and (10):  

-When q=0.25, most of jobs belong to SPJ, and the average parallelism of jobs is 10.1250, 
λ<18.82; 
 

Table 2. Metrics of the simulations 

 
-When q=0.50, there are the same numbers for the SPJ and LPJ, and the average parallelism 

of jobs is 8.2500, λ<14.54; 
-When q=0.75, most of jobs belong to LPJ, and the average parallelism of jobs is 6.3750, 

λ<11.85. 
From the above analysis, we set λ between 5 and 8.5 and the step is 0.5. There are 100000 

jobs totally. We run the system 50 times and get the average value of every parameter. We set
α = 0.5, because all the algorithms have a better performance at this time, and at the same time, 
the utilization efficiency of the system is kept at a higher level. If the weighted waiting time of 
a job is doubled to the average weighted waiting time, the jobs will be scheduled first. Suppose 
the execution time of a task is a random between 1 and 5 on a standard VM. 

We will compare our method with AFCFS, LJFS and Fair. We have introduced AFCFS and 
LJFS in section 1. For Fair, we suppose the algorithm can be paralleled under N (N is an  
integer) times of the parallelism. 

We utilized Mathlab (2014a) programming language to implement these algorithms and ran 
them on an Intel Pentium (R) D 3.4 Ghz, 4 GB RAM desktop PC with 100 MB/s Ethernet card, 
Window 8. 

5.1 ART and AWRT 
Figs. 2~7 depict the comparison of the average response time and average weighted response 
time of AFCFS, LJFS, Fair and ZOMT when q=0.25, q=0.50 and q=0.75, respectively. As 
showed in those figures, there is not a big difference in the performance of AFCFS, LJFS, 
ZOMT when the arrival rate λ is low, especially when λ<6.5.  

The values (ART and AWRT) of the three methods remain stable from 5 to 6.5. With the 
increase of λ, especially when λ>6.5, in general, the values of the three algorithms rise more 

Symbol Meaning 

N The total number of jobs 
joblist {job1,  job2,  job3, …, jobN} 
plemp The parallelism of jobtemp 
wttemp The waiting time of jobtemp 
q The percent of jobs that belong to SPJ  
1-q The percent of jobs that belong to LPJ 
λ Mean arrival rate of jobs 
1/λ Mean inter-arrival rate of jobs 
Totaltime The time from the first job coming to the last job be finished 
ART Average response time 
AWRT Average weighted response time 
AWT Average waiting time 
AWWT Average weighted waiting time 
SDWT Standard deviation of waiting time 
SDWWT Standard deviation of weighted waiting time 
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quickly than before. ZOMT always has the lowest value of ART and AWRT of the four 
methods. ZOMT keeps the average response time and average weighted response time 
increasing more slowly than the others. 

 

 
Fig. 2. ART vs. λ, q=0.25 

 
Fig. 5. ART vs. λ, q=0.50 

 
Fig. 4. ART vs. λ, q=0.75 

 
Fig. 5. AWRT vs. λ, q=0.25 

 
Fig. 6. AWRT vs. λ, q=0.50 

 
Fig. 7. AWRT vs. λ, q=0.75 

 
From Figs. 2~7, we find that ART and AWRT of the four methods have the same tendency 

when the arrival rate is the same. Fair is the large one, followed by AFCFS, LJFS and ZOMT, 
respectively. With the growing of arrival rate, distinct differences of the two parameters are 
being postponed. Significant difference of the two parameters emerges from λ=6.5. Fair 
always has the largest values in ART and AWRT in the four methods.  

For all the cases, to the value of ART of AFCFS, LJFS and Fair, ZOMT average reduces by 
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11.37%, 22.48% and 40.21%; to the value of AWRT of AFCFS, LJFS and Fair, ZOMT average 
reduces by 12.42%, 6.21% and 33.49%.  

ZOMT has better performance because it not only makes the jobs which have more waiting 
time scheduled firstly, but also uses the method to enhance the resource utilization at any time. 
ZOMT has the lowest value in ART and AWRT because: (1) if the waiting time of a job is more 
than a certain value, it will be scheduled immediately; (2) ZOMT ensures most of resources 
can be used by the job. The two aspects reduce the waiting time and enhance the resource 
utilization ratio. 

5.2 AWT and AWWT 
Figs. 8~13 show the comparison of the average waiting time and average weighted response 
time given by AFCFS, LJFS, Fair and ZOMT for q=0.25, q=0.50 and q=0.75, respectively. 

It is shown from those figures, the average waiting times of all methods grow more and 
more quickly with the arrival rate increasing. When λ<6.5 (especially for q=0.50 and q=0.75), 
AFCFS, LJFS and ZOMT tend to offer the same waiting time and weighted waiting time 
basically. 

The values (AWT and AWWT) of ZOMT are lower than others. ZOMT has higher resource 
utilization. ZOMT tries its best scheduling as much as possible, so it reduces the value of AWT 
and AWWT. For all the simulation result, to the value of AWT of AFCFS, LJFS and Fair, 
ZOMT average reduces by 7.41%, 12.31% and 29.49%; to the value of AWWT of AFCFS, 
LJFS and Fair, ZOMT average reduces by 8.39%, 6.79% and 45.59%. 
 

 
Fig. 8. AWT vs. λ, q=0.25 

 
Fig. 9. AWT vs. λ, q=0.50

 
Fig. 10. AWT vs. λ, q=0.75 

 
Fig. 11. AWWT vs. λ, q=0.25 
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Fig. 12. AWWT vs. λ, q=0.50 

 
Fig. 13. AWWT vs. λ, q=0.75

5.3 SDWT and SDWWT 

 
Fig. 14. Average SDWT vs. λ under q=0.75 

 
Fig. 15. Average SDWWT vs. λ under q=0.75 

 
Figs. 14~15 show the comparison of average standard deviation of waiting time and average 
standard deviation of weighted waiting time given by AFCFS, LJFS, Fair and ZOMT when q 
equals 0.75. Those two values illustrate the fairness among jobs. If the value is too high, this 
means that some jobs wait more time than others. 

As shown in those figures, besides Fair and ZOMT, standard deviation of waiting time and 
standard deviation of weighted waiting time of the other two algorithms grow when the arrival 
rate becomes higher. ZOMT and AFCFS give the same performance basically and they have a 
smaller value to LJFS and Fair. The value of SDWT and SDWWT of ZOMT is always a little 
less than the values of AFCFS. We also find that the standard deviations of ART and AWRT 
have the same patterns with SDWT and SDWWT. So, we do not introduce them here. 

From the simulations, we find that Fair does not give a good performance in the scheduling 
of parallel jobs with different parallelisms especially when the arrival rate is a high value. The 
reason is a job in the scheduling needs more VMs. If the Fair scheduler is used, one job takes 
more VMs, and it may influence other jobs. 

5.4 Simulation for the imgration of VMs 

In the simulation, suppose there are  about 1~5% percent for the migration of VMs in every 
hour. The time for the migration is about 2~10 minutes. Because the parallel tasks of the same 
job need to be kept in step in computing, and if a task is stoped, all tasks that belong to the 
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same job must be stoped and wait until the new VM is initialed. We also suppose the system 
supports “slot” [33], so we can begin execution from the most recent slots. And in the 
simulation, we suppose the slot is a time unit. We suppose q equals 0.5 in the simulation. 

 
Fig. 16. ART vs. λ (q=0.50) with migration 

 

 
Fig. 17. AWRT vs. λ (q=0.50) with migration

 
Fig. 18. AWT vs. λ (q=0.50) with migration 

 
Fig. 19. AWWT vs. λ (q=0.50 )with migration

 
From Figs. 16~19, we can find the four methods have the same trends to the result when q 

equals 0.5 in section 5.3. ZOMT always has the lowest value in ART, AWRT, AWT and AWWT.  
So, even though there are some VMs that need to be migrated in the scheduling, ZOMT also 
has the best performance in those four parameters. Compared to the result in section 5.3, those 
four methods both have a increase in those parameters when there are some VMs need that to 
be migrated. With the same method, it has an increase in those four parameters when there are 
migrations of VMs. 

5.5 Simulations on a real log 
This simulation uses the data from the log [29] 
(http://www.cs.huji.ac.il/labs/parallel/workload/l_ricc/index.html). This log contains several 
months accounting records from RIKEN Integrated Cluster of Clusters. It has 4 clusters, and 
begins running since August 2009. The system has 1024 nodes, each with 12 GB of memory 
and two 4-core CPUs, for a total of 12 TB memory and 8192 cores. We delete those jobs that 
are not executed in the log in the simulation. The simulation results are shown in Table 3. The 
column 5 of the log is the parallelism of the jobs. We find that ZOMT always has the smallest 
value in ART, AWT and SDWT. We also find that Fair also has a relatively good performance 
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in the log. We give a comparison from the above section 5.1~5.3. We find the result in Table 3 
has the same pattern when the arrival rate is 5 and q equals to 0.5. The reason is that the log 
comes from a Cluster which is not very busy. 

Table 3. Comparisons of different parameters 

 AFCFS (e+5) LJFS (e+5) Fair (e+5) ZOMT (e+5) 
ART 1.3418 1.3416 1.3080 1.3012 
AWT 1.2297 1.2295 1.1999 1.1816 
SDWT 1.0214 1.0148 1.0205 0.8145 

6. Conclusion 
In this paper, we propose a new scheduling method called ZOMT to schedule the job with 
different parallelism. We check the performance of our proposed ZOMT in AWT, AWWT, ART, 
AWRT, SDWT and SDWWT. Simulation resulting from different aspects proves that ZOMT 
outperforms AFCFS, LJFS and Fair for the parameters: AWT, AWWT, ART and AWRT. Even 
though there are some VMs that need to be imgrated, ZOMT still has a good performance. 

In the Cloud, the VM can initiate and stop at any time. Sometimes, the VM even can migrate 
from different places, and this may bring new challenges to the scheduling of parallel jobs. We 
hope that we can extend our method to the condition of the migrations of VMs in the Cloud. 
Considering the deadline of different parallel tasks, we also hope we can evaluate some 
heuristics [30] in the future. We also hope we can evaluate our method on some simulation 
platforms, such as Gridsim[31] or Cloudsim[32]. Energy consumption is also a hot topic in the 
scheduling. N. Cordeschi et al. [15, 16] have proposed some methods to save energy 
consumption in networked data centers. Though this paper does not take account of the energy 
consumption, and we only take account of the execution time and the fairness, we also hope 
that we can evaluate the energy consumption in the future. Because of the non-linear speedup 
of parallel tasks and the dynamic of the Cloud resources, saving energy consumption is more 
difficult. We hope we can propose and evaluate more methods to minimize the energy 
consumption in some special parallel tasks such as meteorological parallel tasks [33]. 
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