DOI QR코드

DOI QR Code

지대주 각도와 연결방식이 지르코니아 지대주의 파절강도에 미치는 영향

Effects of abutment angulation and type of connection on the fracture strength of zirconia abutments

  • 김호성 (원광대학교 치과대학 치과보철학교실) ;
  • 조혜원 (원광대학교 치과대학 치과보철학교실)
  • Kim, Ho-Seong (Department of Prosthodontics, College of Dentistry, Wonkwang University) ;
  • Cho, Hye-Won (Department of Prosthodontics, College of Dentistry, Wonkwang University)
  • 투고 : 2016.12.05
  • 심사 : 2017.01.04
  • 발행 : 2017.01.31

초록

목적: 내부 연결형과 외부 연결형의 임플란트에서 직선형과 경사형 지르코니아 지대주의 파절강도를 비교하였다. 재료 및 방법: 내부육각 연결형 임플란트 20개와 외부육각 연결형 임플란트 20개에, 기성 직선형 지르코니아 지대주와, $17^{\circ}$ 경사형 지르코니아 지대주를 10개씩 체결하였다. 시편은 연결 방식과 지대주 각도에 따라 4개의 군으로 나누었다: 내부 연결형/ 직선형 지대주, INS군; 내부 연결형/ 경사형 지대주, INA 군; 외부 연결형/ 직선형 지대주, EXS 군; 외부 연결형/ 경사형 지대주, EXA 군. 모든 시편은 만능시험기에서 1 mm/min의 crosshead speed로 $30^{\circ}$ 하중을 가했다. 지대주의 파절강도를 측정하고, 2-way ANOVA와 independent t-test로 통계처리 하였다(${\alpha}=.05$). 결과: 각 군의 평균파절강도는 다음과 같다: INS군, 955.91 N; INA군, 933.65 N; EXS군, 1267.20 N; EXA군, 1405.93 N. 외부 연결형이 내부 연결형에 비해 파절강도가 높았다(P < .001). 내부연결형(P = .747)과 외부 연결형(P = .222)에서 지대주 각도에 따른 파절강도는 차이가 없었다. 또한 내부 연결형 지대주는 육각 부위에서 수평 파절이 일어난 반면, 외부 연결형 지대주는 설측 치경부에서 파절되었다. 결론: 외부 연결형 지르코니아 지대주가 내부 연결형 지대주에 비해 파절 강도가 높았고, 직선형과 경사형 지르코니아 지대주의 파절강도는 차이가 없었다.

Purpose: The purpose of this study was to evaluate the fracture strength of straight and angled zirconia abutments for internal hex and external hex implants. Materials and methods: Twenty internal hex implants and 20 external hex implants were prepared. The prefabricated straight zirconia abutments and 17-degree-angled zirconia abutments were connected to those 40 implants. The specimens were classified into 4 groups depending on the connection type and abutment angulation; internal hex implant/straight abutment, group INS; internal hex implant/angled abutment, group INA; external hex implant/straight abutment, group EXS; external hex implant/angled abutment, group EXA. All specimens were loaded at a 30-degree angle with a crosshead speed of 1 mm/min using universal testing machine. The fracture loads were analyzed using 2-way ANOVA and independent t-test (${\alpha}=.05$). Results: The mean fracture load for INS was 955.91 N, 933.65 N for INA, 1267.20 N for EXS, and 1405.93 N for EXA. External hex implant showed a significantly higher fracture load, as compared to internal hex implant (P < .001). No significant differences in fracture loads were observed between the straight and angled abutment in internal hex implants (P = .747) and external hex implants (P = .222). Internal hexes of abutments were fractured horizontally in internal connection implants, while lingual cervical neck portions were fractured in external connection implants. Conclusion: The zirconia abutments with external hex implants showed significantly higher fracture strength than those with internal hex implants. However there was no difference in fracture strength between the straight and 17-degree-angled zirconia abutment connected to both implant systems.

키워드

참고문헌

  1. Albosefi A, Finkelman M, Zandparsa R. An in vitro comparison of fracture load of zirconia custom abutments with internal connection and different angulations and thickness: part I. J Prosthodont 2014;23:296-301. https://doi.org/10.1111/jopr.12118
  2. Moon SJ, Heo YR, Lee GJ, Kim HJ. Axial wall thickness of zirconia abutment in anterior region. J Korean Acad Prosthodont 2015;53:345-51. https://doi.org/10.4047/jkap.2015.53.4.345
  3. Yildirim M, Fischer H, Marx R, Edelhoff D. In vivo fracture resistance of implant-supported all-ceramic restorations. J Prosthet Dent 2003;90:325-31. https://doi.org/10.1016/S0022-3913(03)00514-6
  4. Sailer I, Sailer T, Stawarczyk B, Jung RE, Hammerle CH. In vitro study of the influence of the type of connection on the fracture load of zirconia abutments with internal and external implant-abutment connections. Int J Oral Maxillofac Implants 2009;24:850-8.
  5. Truninger TC, Stawarczyk B, Leutert CR, Sailer TR, Hammerle CH, Sailer I. Bending moments of zirconia and titanium abutments with internal and external implant-abutment connections after aging and chewing simulation. Clin Oral Implants Res 2012;23:12-8. https://doi.org/10.1111/j.1600-0501.2010.02141.x
  6. Cavallaro J Jr, Greenstein G. Angled implant abutments: a practical application of available knowledge. J Am Dent Assoc 2011;142:150-8. https://doi.org/10.14219/jada.archive.2011.0057
  7. Maeda Y, Satoh T, Sogo M. In vitro differences of stress concentrations for internal and external hex implant-abutment connections: a short communication. J Oral Rehabil 2006;33:75-8. https://doi.org/10.1111/j.1365-2842.2006.01545.x
  8. Segundo RM, Oshima HM, da Silva IN, Burnett LH Jr, Mota EG, Silva LL. Stress distribution of an internal connection implant prostheses set: a 3D finite element analysis. Stomatologija 2009;11:55-9.
  9. Kitagawa T, Tanimoto Y, Odaki M, Nemoto K, Aida M. Influence of implant/abutment joint designs on abutment screw loosening in a dental implant system. J Biomed Mater Res B Appl Biomater 2005;75:457-63.
  10. Thulasidas S, Givan DA, Lemons JE, O'Neal SJ, Ramp LC, Liu PR. Influence of implant angulation on the fracture resistance of zirconia abutments. J Prosthodont 2015;24:127-35. https://doi.org/10.1111/jopr.12182
  11. Sethi A, Kaus T, Sochor P. The use of angulated abutments in implant dentistry: five-year clinical results of an ongoing prospective study. Int J Oral Maxillofac Implants 2000;15:801-10.
  12. Saab XE, Griggs JA, Powers JM, Engelmeier RL. Effect of abutment angulation on the strain on the bone around an implant in the anterior maxilla: a finite element study. J Prosthet Dent 2007;97:85-92. https://doi.org/10.1016/j.prosdent.2006.12.002
  13. Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J Prosthet Dent 1996;76:633-40. https://doi.org/10.1016/S0022-3913(96)90442-4
  14. Tsuge T, Hagiwara Y. Influence of lateral-oblique cyclic loading on abutment screw loosening of internal and external hexagon implants. Dent Mater J 2009;28:373-81. https://doi.org/10.4012/dmj.28.373
  15. Canullo L, Coelho PG, Bonfante EA. Mechanical testing of thinwalled zirconia abutments. J Appl Oral Sci 2013;21;20-4. https://doi.org/10.1590/1678-7757201302124
  16. Kajiwara N, Masaki C, Mukaibo T, Kondo Y, Nakamoto T, Hosokawa R. Soft tissue biological response to zirconia and metal implant abutments compared with natural tooth: microcirculation monitoring as a novel bioindicator. Implant Dent 2015;24:37-41.
  17. Hjerppe J, Lassila LV, Rakkolainen T, Narhi T, Vallittu PK. Loadbearing capacity of custom-made versus prefabricated commercially available zirconia abutments. Int J Oral Maxillofac Implants 2011;26:132-8.
  18. Aboushelib MN, Salameh Z. Zirconia implant abutment fracture: clinical case reports and precautions for use. Int J Prosthodont 2009;22:616-9.
  19. Yilmaz B, Salaita LG, Seidt JD, McGlumphy EA, Clelland NL. Load to failure of different zirconia abutments for an internal hexagon implant. J Prosthet Dent 2015;114:373-7. https://doi.org/10.1016/j.prosdent.2015.03.015
  20. Adatia ND, Bayne SC, Cooper LF, Thompson JY. Fracture resistance of yttria-stabilized zirconia dental implant abutments. J Prosthodont 2009;18:17-22. https://doi.org/10.1111/j.1532-849X.2008.00378.x
  21. De Boever JA, McCall WD Jr, Holden S, Ash MM Jr. Functional occlusal forces: an investigation by telemetry. J Prosthet Dent 1978;40:326-33. https://doi.org/10.1016/0022-3913(78)90042-2
  22. Waltimo A, Kononen M. A novel bite force recorder and maximal isometric bite force values for healthy young adults. Scand J Dent Res 1993;101:171-5.
  23. Haraldson T, Carlsson GE, Ingervall B. Functional state, bite force and postural muscle activity in patients with osseointegrated oral implant bridges. Acta Odontol Scand 1979;37:195-206. https://doi.org/10.3109/00016357909027582
  24. Al-Omari WM, Shadid R, Abu-Naba'a L, El Masoud B. Porcelain fracture resistance of screw-retained, cement-retained, and screw-cement-retained implant-supported metal ceramic posterior crowns. J Prosthodont 2010;19:263-73. https://doi.org/10.1111/j.1532-849X.2009.00560.x
  25. Dittmer MP, Dittmer S, Borchers L, Kohorst P, Stiesch M. Influence of the interface design on the yield force of the implantabutment complex before and after cyclic mechanical loading. J Prosthodont Res 2012;56:19-24. https://doi.org/10.1016/j.jpor.2011.02.002
  26. Ribeiro CG, Maia ML, Scherrer SS, Cardoso AC, Wiskott HW. Resistance of three implant-abutment interfaces to fatigue testing. J Appl Oral Sci 2011;19:413-20. https://doi.org/10.1590/S1678-77572011005000018
  27. Freitas AC Jr, Bonfante EA, Rocha EP, Silva NR, Marotta L, Coelho PG. Effect of implant connection and restoration design (screwed vs. cemented) in reliability and failure modes of anterior crowns. Eur J Oral Sci 2011;119:323-30. https://doi.org/10.1111/j.1600-0722.2011.00837.x
  28. Karl M, Kelly JR. Influence of loading frequency on implant failure under cyclic fatigue conditions. Dent Mater 2009;25:1426-32. https://doi.org/10.1016/j.dental.2009.06.015