DOI QR코드

DOI QR Code

치의학 분야에 대한 광간섭 단층영상기기(optical coherence tomography)의 적용 가능성 고찰

Study on application to the field of dentistry using optical coherence tomography (OCT)

  • 표세욱 (서울대학교 치의학대학원 치과보철학교실) ;
  • 임영준 (서울대학교 치의학대학원 치과보철학교실) ;
  • 이원진 (서울대학교 치과대학 구강악안면방사선학교실) ;
  • 이준재 (서울대학교 치의학대학원 치과보철학교실)
  • Pyo, Se-Wook (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Lim, Young-Joon (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Lee, Won-Jin (Department of Oral and Maxillofacial Radiology, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Jun-Jae (Department of Prosthodontics, School of Dentistry, Seoul National University)
  • 투고 : 2016.07.11
  • 심사 : 2016.09.09
  • 발행 : 2017.01.31

초록

목적: 본 논문은 다양한 의료분야 진단에 사용되고 있는 비침습적 영상진단장치 중 낮은 투과 깊이를 가지지만 우수한 분해능과 실시간 영상획득이 가능한 광간섭 단층영상기기(OCT)의 기본 작동 원리, 종류, 장단점 및 응용분야 등을 소개한다. 재료 및 방법: 본 논문에 사용된 연구 데이터는 PubMed, 의료저널 및 관련논문을 검색하여 작성하였다. 결과: OCT를 이용하여 비치습적인 방법으로 실시간 영상 획득 및 고해상도의 생물학적 미세구조 관찰이 가능하며 이는 치아균열, 치아우식, 치아의 마모, 치주질환, 구강암, 그리고 수복물의 미세누출 평가 등에 유용하다. 결론: 현재 다양한 치의학적 진단에 OCT가 사용되고 있으며, 특히 치과보철학 분야에 있어서 지르코니아와 같은 재료의 발전과 함께 더욱 활용범위가 넓어질 것으로 판단된다.

Purpose: This paper describes the basic principles and the feasibility of the field of dental diagnosis of optical coherence tomography (OCT) used in diverse field of medical diagnosis. Materials and methods: In this review, the research data of OCT were searched from PubMed, medical journal and related papers. Results: Generally, OCT is noninvasive and is possible to secure an excellent spatial resolution and real-time images of biological microstructure. Conclusion: This review discusses not only the basic principles of operation, types, advantages, disadvantages of OCT but also the future applications of OCT technology and their potential in the field of dental diagnosis.

키워드

참고문헌

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science 1991;254:1178-81. https://doi.org/10.1126/science.1957169
  2. Brezinski ME, Tearney GJ, Weissman NJ, Boppart SA, Bouma BE, Hee MR, Weyman AE, Swanson EA, Southern JF, Fujimoto JG. Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart 1997;77:397-403. https://doi.org/10.1136/hrt.77.5.397
  3. Wang Y, Bower BA, Izatt JA, Tan O, Huang D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt 2008;13:064003. https://doi.org/10.1117/1.2998480
  4. Poneros JM, Brand S, Bouma BE, Tearney GJ, Compton CC, Nishioka NS. Diagnosis of specialized intestinal metaplasia by optical coherence tomography. Gastroenterology 2001;120:7-12. https://doi.org/10.1053/gast.2001.20911
  5. Pierce MC, Strasswimmer J, Hyle Park B, Cense B, De Boer JF. Birefringence measurements in human skin using polarizationsensitive optical coherence tomography. J Biomed Opt 2004;9:287-91. https://doi.org/10.1117/1.1645797
  6. Colston BW, Sathyam Jr US, Dasilva LB, Everett MJ. Dental OCT. Opt Express 1998;3:230-8. https://doi.org/10.1364/OE.3.000230
  7. Colston BW Jr, Everett MJ, Da Silva LB, Otis LL, Stroeve P, Nathel H. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography. Appl Opt 1998;37:3582-5. https://doi.org/10.1364/AO.37.003582
  8. Optical Coherence Tomography 2010: Technology, Applications and Markets, Strategies Unlimited, 2010.
  9. Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 2003;11:889-94. https://doi.org/10.1364/OE.11.000889
  10. OCT supports industrial nondestructive depth analysis. Laser Focus World. 2011.8.
  11. Hsieh YS, Ho YC, Lee SY, Chuang CC, Tsai JC, Lin KF, Sun CW. Dental optical coherence tomography. Sensors (Basel) 2013;13:8928-49. https://doi.org/10.3390/s130708928
  12. Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography-principles and applications. Rep Prog Phys 2003;66:239-303. https://doi.org/10.1088/0034-4885/66/2/204
  13. Maciej Wojtkowski, High-speed optical coherence tomography: basics and applications, Appl Opt 2010;49:30-61.
  14. Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R. Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express 2010;18:14685-704. https://doi.org/10.1364/OE.18.014685
  15. Strasswimmer J, Pierce MC, Park BH, Neel V, de Boer JF. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J Biomed Opt 2004;9:292-8. https://doi.org/10.1117/1.1644118
  16. Sakai S, Yamanari M, Lim Y, Nakagawa N, Yasuno Y. In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography. Biomed Opt Express 2011;2:2623-31. https://doi.org/10.1364/BOE.2.002623
  17. Yazdanfar S, Rollins AM, Izatt JA. In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Arch Ophthalmol 2003;121:235-9. https://doi.org/10.1001/archopht.121.2.235
  18. Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, Gladkova N, Ourutina M, Reitze D, Warren J. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express 1998;3:239-50. https://doi.org/10.1364/OE.3.000239
  19. Wang XJ, Milner TE, de Boer JF, Zhang Y, Pashley DH, Nelson JS. Characterization of dentin and enamel by use of optical coherence tomography. Appl Opt 1999;38:2092-6. https://doi.org/10.1364/AO.38.002092
  20. Otis LL, Everett MJ, Sathyam US, Colston BW Jr. Optical coherence tomography: a new imaging technology for dentistry. J Am Dent Assoc 2000;131:511-4. https://doi.org/10.14219/jada.archive.2000.0210
  21. Warren JA, Gelikonov GV, Gelikonov VM, Feldchtein FI, Beach NM, Moores MD, Reitze DH. Imaging and characterization of dental structure using optical coherence tomography. Pros Laser Electro Optic CLEO 1998;3-8.
  22. Imai K, Shimada Y, Sadr A, Sumi Y, Tagami J. Noninvasive crosssectional visualization of enamel cracks by optical coherence tomography in vitro. J Endod 2012;38:1269-74. https://doi.org/10.1016/j.joen.2012.05.008
  23. Ishibashi K, Ozawa N, Tagami J, Sumi Y. Swept-source optical coherence tomography as a new tool to evaluate defects of resin-based composite restorations. J Dent 2011 ;39:543-8. https://doi.org/10.1016/j.jdent.2011.05.005
  24. Braz AK, Kyotoku BB, Gomes AS. In vitro tomographic image of human pulp-dentin complex: optical coherence tomography and histology. J Endod 2009;35:1218-21. https://doi.org/10.1016/j.joen.2009.05.003
  25. Baumgartner A, Hitzenberger CK, Dichtl S, Sattmann H, Moritz A, Sperr W, Fercher AF. Optical coherence tomography of dental structures. Lasers in Dent 1998;3248:130-6.
  26. Fried D, Xie J, Shafi S, Featherstone JD, Breunig TM, Le C. Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt 2002;7:618-27. https://doi.org/10.1117/1.1509752
  27. Le MH, Darling CL, Fried D. Automated analysis of lesion depth and integrated reflectivity in PS-OCT scans of tooth demineralization. Lasers Surg Med 2010;42:62-8. https://doi.org/10.1002/lsm.20862
  28. Lee C, Darling CL, Fried D. Polarization-sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots. Dent Mater 2009;25:721-8. https://doi.org/10.1016/j.dental.2008.11.014
  29. Wu J, Fried D. High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at lambda = 1310-nm. Lasers Surg Med 2009;41:208-13. https://doi.org/10.1002/lsm.20746
  30. Chen Y, Otis L, Piao D, Zhu Q. Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system. Appl Opt 2005;44:2041-8. https://doi.org/10.1364/AO.44.002041
  31. Louie T, Lee C, Hsu D, Hirasuna K, Manesh S, Staninec M, Darling CL, Fried D. Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography. Lasers Surg Med 2010;42:738-45.
  32. Fried D, Staninec M, Darling C, Kang H, Chan K. Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner. Proc SPIE Int Soc Opt Eng 2012;8208.
  33. Baek JH, Na J, Lee BH, Choi E, Son WS. Optical approach to the periodontal ligament under orthodontic tooth movement: a preliminary study with optical coherence tomography. Am J Orthod Dentofacial Orthop 2009;135:252-9. https://doi.org/10.1016/j.ajodo.2007.10.037
  34. Hsieh YS, Ho YC, Lee SY, Lu CW, Jiang CP, Chuang CC, Wang CY, Sun CW. Subgingival calculus imaging based on swept-source optical coherence tomography. J Biomed Opt 2011;16:071409. https://doi.org/10.1117/1.3602851
  35. Wilder-Smith P, Jung WG, Brenner M, Osann K, Beydoun H, Messadi D, Chen Z. In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers Surg Med 2004;35:269-75. https://doi.org/10.1002/lsm.20098
  36. Jung W, Zhang J, Chung J, Wilder-Smith P, Brenner M, Nelson JS, Chen Z. Advances in oral cancer detection using optical coherence tomography. IEEE JOST in Quantum Electronics 2005;11:811-7. https://doi.org/10.1109/JSTQE.2005.857678
  37. Kim CS, Wilder-Smith P, Ahn YC, Liaw LH, Chen Z, Kwon YJ. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. J Biomed Opt 2009;14:034008. https://doi.org/10.1117/1.3130323
  38. Tsai MT, Lee CK, Lee HC, Chen HM, Chiang CP, Wang YM, Yang CC. Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. J Biomed Opt 2009;14:044028. https://doi.org/10.1117/1.3200936
  39. Lee CK, Tsai MT, Lee HC, Chen HM, Chiang CP, Wang YM, Yang CC. Diagnosis of oral submucous fibrosis with optical coherence tomography. J Biomed Opt 2009;14:054008. https://doi.org/10.1117/1.3233653
  40. Kim JH, Kim KB. Analysis of the marginal and internal fit of dental zirconia core using optical coherence tomography (OCT). J Korea Content Soc 2012;12:240-7.
  41. Di Stasio D, Lauritano D, Romano A, Salerno C, Minervini G, Gentile E, Serpico R, Lucchese A. In vivo Characterization of oral pemphigus vulgaris by optical coherence tomography. J Biol Regul Homeost Agents 2015;29:39-41.
  42. Iino Y, Ebihara A, Yoshioka T, Kawamura J, Watanabe S, Hanada T, Nakano K, Sumi Y, Suda H. Detection of a second mesiobuccal canal in maxillary molars by swept-source optical coherence tomography. J Endod 2014;40:1865-8. https://doi.org/10.1016/j.joen.2014.07.012
  43. Lin CL, Kuo WC, Yu JJ, Huang SF. Examination of ceramic restorative material interfacial debonding using acoustic emission and optical coherence tomography. Dent Mater 2013;29:382-8. https://doi.org/10.1016/j.dental.2012.12.003
  44. Lin CL, Kuo WC, Chang YH, Yu JJ, Lin YC. Examination of ceramic/enamel interfacial debonding using acoustic emission and optical coherence tomography. Dent Mater 2014;30:910-6. https://doi.org/10.1016/j.dental.2014.05.023
  45. Kikuchi K, Akiba N, Sadr A, Sumi Y, Tagami J, Minakuchi S. Evaluation of the marginal fit at implant-abutment interface by optical coherence tomography. J Biomed Opt 2014;19:055002. https://doi.org/10.1117/1.JBO.19.5.055002

피인용 문헌

  1. The Use of Optical Coherence Tomography in Dental Diagnostics: A State-of-the-Art Review vol.2017, pp.2040-2309, 2017, https://doi.org/10.1155/2017/7560645
  2. A Comprehensive Review on the Optical Micro-Electromechanical Sensors for the Biomedical Application vol.9, pp.None, 2021, https://doi.org/10.3389/fpubh.2021.759032