DOI QR코드

DOI QR Code

Aflatoxin B1 Detoxification by Aspergillus oryzae from Meju, a Traditional Korean Fermented Soybean Starter

  • Lee, Kyu Ri (Department of Integrated Biomedical and Life Science, Korea University) ;
  • Yang, Sun Min (Department of Integrated Biomedical and Life Science, Korea University) ;
  • Cho, Sung Min (Department of Integrated Biomedical and Life Science, Korea University) ;
  • Kim, Myunghee (Department of Food Science and Technology, Yeungnam University) ;
  • Hong, Sung-Yong (Department of Integrated Biomedical and Life Science, Korea University) ;
  • Chung, Soo Hyun (Department of Integrated Biomedical and Life Science, Korea University)
  • Received : 2016.07.28
  • Accepted : 2016.10.28
  • Published : 2017.01.28

Abstract

Aflatoxins are classified as Group 1 (carcinogenic to humans) by the International Agency for Research on Cancer. In this study, a total of 134 fungal strains were isolated from 65 meju samples, and two fungal isolates were selected as potential aflatoxin $B_1$ ($AFB_1$)-biodetoxification fungi. These fungi were identified as Aspergillus oryzae MAO103 and A. oryzae MAO104 by sequencing the beta-tubulin gene. The two A. oryzae strains were able to degrade more than 90% of $AFB_1$ (initial concentration: $40{\mu}g/l$) in a culture broth in 14 days. The mutagenic effects of $AFB_1$ treated with A. oryzae MAO103 and MAO104 significantly decreased to 5.7% and 6.4%, respectively, in the frame-shift mutation of Ames tests using Salmonella typhimurium TA98. The base-substituting mutagenicity of $AFB_1$ was also decreased by the two fungi. Moreover, $AFB_1$ production by Aspergillus flavus was significantly decreased by the two A. oryzae strains on soybean-based agar plates. Our data suggest that the two $AFB_1$-detoxifying A. oryzae strains have potential application to control $AFB_1$ in foods and feeds.

Keywords

References

  1. Hesseltine C, Shotwell OL, Ellis J, Stubblefield R. 1966. Aflatoxin formation by Aspergillus flavus. Bacteriol. Rev. 30: 795.
  2. Weckbach L, Marth E. 1977. Aflatoxin production by Aspergillus parasiticus in a competitive environment. Mycopathologia 62: 39-45. https://doi.org/10.1007/BF00491994
  3. Ito Y, Peterson SW, Wicklow DT, Goto T. 2001. Aspergillus pseudotamarii, a new aflatoxin producing species in Aspergillus section Flavi. Mycol. Res. 105: 233-239. https://doi.org/10.1017/S0953756200003385
  4. Kurtzman C, Horn B, Hesseltine C. 1987. Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Antonie Van Leeuwenhoek 53: 147-158. https://doi.org/10.1007/BF00393843
  5. Corrier D. 1991. Mycotoxicosis: mechanisms of immuno-suppression. Vet. Immunol. Immunopathol. 30: 73-87. https://doi.org/10.1016/0165-2427(91)90010-A
  6. Shimada T, Guengerich FP. 1989. Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc. Natl. Acad. Sci. USA 86: 462-465. https://doi.org/10.1073/pnas.86.2.462
  7. Wong JJ, Hsieh D. 1976. Mutagenicity of aflatoxins related to their metabolism and carcinogenic potential. Proc. Natl. Acad. Sci. USA 73: 2241-2244. https://doi.org/10.1073/pnas.73.7.2241
  8. Coomes TJ, Crowther P, Feuell A, Francis B. 1966. Experimental detoxification of groundnut meals containing aflatoxin. Nature 209: 406-407. https://doi.org/10.1038/209406a0
  9. Purchase I, Steyn M, Rinsma R, Tustin R. 1972. Reduction of the aflatoxin M content of milk by processing. Food Cosmet. Toxicol. 10: 383-387. https://doi.org/10.1016/S0015-6264(72)80256-6
  10. Aibara K, Yano N. 1977. New approach to aflatoxin removal, pp. 151-161. In Rodricks JV, Hesseltine CW, Mehlamn MA (eds.). Mycotoxins in Human and Animal Health. Pathotox Publishers Inc., Park Forest South, IL.
  11. Diaz DE, Hagler Jr WM, Blackwelder JT, Eve JA, Hopkins BA, Anderson KL, et al. 2004. Aflatoxin binders II: reduction of aflatoxin M1 in milk by sequestering agents of cows consuming aflatoxin in feed. Mycopathologia 157: 233-241. https://doi.org/10.1023/B:MYCO.0000020587.93872.59
  12. Grant PG, Phillips TD. 1998. Isothermal adsorption of aflatoxin B1 on HSCAS clay. J. Agric. Food Chem. 46: 599-605. https://doi.org/10.1021/jf970604v
  13. Mishra H, Das C. 2003. A review on biological control and metabolism of aflatoxin. Crit. Rev. Food Sci. Nutr. 43: 245. https://doi.org/10.1080/10408690390826518
  14. Park DL. 2002. Effect of processing on aflatoxin, pp. 173-179. Mycotoxins and Food Safety. Springer, Berlin.
  15. Yazdanpanah H, Mohammadi T, Abouhossain G, Cheraghali AM. 2005. Effect of roasting on degradation of aflatoxins in contaminated pistachio nuts. Food Chem. Toxicol. 43: 1135-1139. https://doi.org/10.1016/j.fct.2005.03.004
  16. Sreenivasamurthy V, Parpia H, Srikanta S, Murti AS. 1967. Detoxification of aflatoxin in peanut meal by hydrogen peroxide. J. Assoc. Off. Anal. Chem. 50: 350-354.
  17. Dwarakanath C, Rayner E, Mann G, Dollear F. 1968. Reduction of aflatoxin levels in cottonseed and peanut meals by ozonization. J. Am. Oil Chem. Soc. 45: 93-95. https://doi.org/10.1007/BF02890715
  18. Park DL, Lee L, Koltun S. 1984. Distribution of ammoniarelated aflatoxin reaction products in cottonseed meal. J. Am. Oil Chem. Soc. 61: 1071-1074. https://doi.org/10.1007/BF02636223
  19. Shantha T, Sreenivasa M, Rati E, Prema V. 1986. Detoxification of groundnut seeds by urea and sunlight. J. Food Saf. 7: 225-231. https://doi.org/10.1111/j.1745-4565.1986.tb00544.x
  20. Sen A, Wei C, Fernando S, Toth J, Ahmed E, Dunaif G. 1988. Reduction of mutagenicity and toxicity of aflatoxin B1 by chlorine gas treatment. Food Chem. Toxicol. 26: 745-752. https://doi.org/10.1016/0278-6915(88)90209-8
  21. Doyle M, Marth E. 1978. Bisulfite degrades aflatoxin: effect of temperature and concentration of bisulfite. J. Food Prot. 41: 774-780. https://doi.org/10.4315/0362-028X-41.10.774
  22. Phillips TD, Clement BA, Park DL. 1994. Approaches to Reduction of aflatoxins in foods and feeds, pp. 383-406. In Eaton LD, Groopman JD (eds.). The Toxicology of Aflatoxins: Human Health, Veterinary, and Agricultural Significance. Academic Press, New York.
  23. Samarajeewa U, Sen A, Cohen M, Wei C. 1990. Detoxification of aflatoxins in foods and feeds by physical and chemical methods. J. Food Prot. 53: 489-501. https://doi.org/10.4315/0362-028X-53.6.489
  24. Teniola OD, Addo PA, Brost IM, Farber P, Jany KD, Alberts JF, et al. 2005. Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556(T). Int. J. Food Microbiol. 105: 111-117. https://doi.org/10.1016/j.ijfoodmicro.2005.05.004
  25. Shantha T. 1999. Fungal degradation of aflatoxin B1. Nat. Toxins 7: 175-178. https://doi.org/10.1002/1522-7189(200009/10)7:5<175::AID-NT63>3.0.CO;2-M
  26. Hormisch D, Brost I, Kohring G-W, Giffhorn F, Kroppenstedt R, Stackebradt E, et al. 2004. Mycobacterium fluoranthenivorans sp. nov., a fluoranthene and aflatoxin B1 degrading bacterium from contaminated soil of a former coal gas plant. Syst. Appl. Microbiol. 27: 653-660. https://doi.org/10.1078/0723202042369866
  27. Petchkongkaew A, Taillandier P, Gasaluck P, Lebrihi A. 2008. Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): screening for aflatoxin B1 and ochratoxin A detoxification. J. Appl. Microbiol. 104: 1495-1502. https://doi.org/10.1111/j.1365-2672.2007.03700.x
  28. Zhao L, Guan S, Gao X, Ma Q, Lei Y, Bai X, Ji C. 2011. Preparation, purification and characteristics of an aflatoxin degradation enzyme from Myxococcus fulvus ANSM068. J. Appl. Microbiol. 110: 147-155. https://doi.org/10.1111/j.1365-2672.2010.04867.x
  29. Samuel MS, Sivaramakrishna A, Mehta A. 2014. Degradation and detoxification of aflatoxin B1 by Pseudomonas putida. Int. Biodeterior. Biodegradation 86: 202-209. https://doi.org/10.1016/j.ibiod.2013.08.026
  30. Jung YJ, Chung SH, Lee HK, Chun HS, Hong SB. 2012. Isolation and identification of fungi from a meju contaminated with aflatoxins. J. Microbiol. Biotechnol. 22: 1740-1748. https://doi.org/10.4014/jmb.1207.07048
  31. Yang Z-Y, Shim W-B, Kim J-H, Park S-J, Kang S-J, Nam B-S, Chung D-H. 2004. Detection of aflatoxin-producing molds in Korean fermented foods and grains by multiplex PCR. J. Food Prot. 67: 2622-2626. https://doi.org/10.4315/0362-028X-67.11.2622
  32. Moricz AM, Fater Z, Otta KH, Tyihak E, Mincsovics E. 2007. Overpressured layer chromatographic determination of aflatoxin B1, B2, G1 and G2 in red paprika. Microchem. J. 85: 140-144. https://doi.org/10.1016/j.microc.2006.03.007
  33. Stroka J, Van Otterdijk R, Anklam E. 2000. Immunoaffinity column clean-up prior to thin-layer chromatography for the determination of aflatoxins in various food matrices. J. Chromatogr. A 904: 251-256. https://doi.org/10.1016/S0021-9673(00)00930-4
  34. Var I, Kabak B, Gok F. 2007. Survey of aflatoxin B1 in helva, a traditional Turkish food, by TLC. Food Control 18: 59-62. https://doi.org/10.1016/j.foodcont.2005.08.008
  35. Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61: 1323-1330.
  36. Tao L, Chung SH. 2014. Non-aflatoxigenicity of commercial Aspergillus oryzae strains due to genetic defects compared to aflatoxigenic Aspergillus flavus. J. Microbiol. Biotechnol. 24: 1081-1087. https://doi.org/10.4014/jmb.1311.11011
  37. Hong S-B, Kim D-H, Samson RA. 2015. Aspergillus associated with meju, a fermented soybean starting material for traditional soy sauce and soybean paste in Korea. Mycobiology 43: 218-224. https://doi.org/10.5941/MYCO.2015.43.3.218
  38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  39. Davis ND, Diener U, Eldridge D. 1966. Production of aflatoxins B1 and G1 by Aspergillus flavus in a semisynthetic medium. Appl. Microbiol. 14: 378-380.
  40. Abbas HK, Zablotowicz RM, Bruns HA, Abel CA. 2006. Biocontrol of aflatoxin in corn by inoculation with nonaflatoxigenic Aspergillus flavus isolates. Biocontrol Sci. Technol. 16: 437-449. https://doi.org/10.1080/09583150500532477
  41. Sugimura T, Kawachi T, Nagao M, Yahagi T, Seino Y, Okamoto T, et al. 1977. Mutagenic principle(s) in tryptophan and phenylalanine pyrolysis products. Proc. Jpn. Acad. 53: 58-61.
  42. Choi S, Jun H, Bang J, Chung S-H, Kim Y, Kim B-S, et al. 2015. Behaviour of Aspergillus flavus and Fusarium graminearum on rice as affected by degree of milling, temperature, and relative humidity during storage. Food Microbiol. 46: 307-313. https://doi.org/10.1016/j.fm.2014.08.019
  43. Filtenborg O, Frisvad JC, Svendsen JA. 1983. Simple screening method for molds producing intracellular mycotoxins in pure cultures. Appl. Environ. Microbiol. 45: 581-585.
  44. Scheidegger K, Payne G. 2003. Unlocking the secrets behind secondary metabolism: a review of Aspergillus flavus from pathogenicity to functional genomics. J. Toxicol. Toxin Rev. 22: 423-459. https://doi.org/10.1081/TXR-120024100
  45. Dalie D, Deschamps A, Richard-Forget F. 2010. Lactic acid bacteria - potential for control of mould growth and mycotoxins: a review. Food Control 21: 370-380. https://doi.org/10.1016/j.foodcont.2009.07.011
  46. Haskard CA, El-Nezami HS, Kankaanpaa PE, Salminen S, Ahokas JT. 2001. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl. Environ. Microbiol. 67: 3086-3091. https://doi.org/10.1128/AEM.67.7.3086-3091.2001
  47. Shetty PH, Hald B, Jespersen L. 2007. Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. Int. J. Food Microbiol. 113: 41-46. https://doi.org/10.1016/j.ijfoodmicro.2006.07.013
  48. Czeczot H, Tudek B, Kusztelak J, Szymczyk T, Dobrowolska B, Glinkowska G, et al. 1990. Isolation and studies of the mutagenic activity in the Ames test of flavonoids naturally occurring in medical herbs. Mutat. Res. Genet. Toxicol. 240: 209-216. https://doi.org/10.1016/0165-1218(90)90060-F
  49. Florin I, Rutberg L, Curvall M, Enzell CR. 1980. Screening of tobacco smoke constituents for mutagenicity using the Ames' test. Toxicology. 15: 219-232. https://doi.org/10.1016/0300-483X(80)90055-4
  50. Maron DM, Ames BN. 1983. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 113: 173-215. https://doi.org/10.1016/0165-1161(83)90010-9
  51. Reifferscheid G, Heil J. 1996. Validation of the SOS/umu test using test results of 486 chemicals and comparison with the Ames test and carcinogenicity data. Mutat. Res. 369: 129-145. https://doi.org/10.1016/S0165-1218(96)90021-X
  52. Vargas VMF, Motta V, Henriques JAP. 1993. Mutagenic activity detected by the Ames test in river water under the influence of petrochemical industries. Mutat. Res. 319: 31-45. https://doi.org/10.1016/0165-1218(93)90028-C
  53. Francis A, Shetty T, Bhattacharya R. 1989. Modifying role of dietary factors on the mutagenicity of aflatoxin B1: in vitro effect of plant flavonoids. Mutat. Res. 222: 393-401. https://doi.org/10.1016/0165-1218(89)90114-6
  54. Mandal S, Ahuja A, Shivapurkar NM, Cheng S-J, Groopman JD, Stoner GD. 1987. Inhibition of aflatoxin B1 mutagenesis in Salmonella typhimurium and DNA damage in cultured rat and human tracheobronchial tissues by ellagic acid. Carcinogenesis 8: 1651-1656. https://doi.org/10.1093/carcin/8.11.1651
  55. Lee L, Dunn J, DeLucca A, Ciegler A. 1981. Role of lactone ring of aflatoxin B1 in toxicity and mutagenicity. Experientia 37: 16-17. https://doi.org/10.1007/BF01965543
  56. Wehner F, Thiel P, Van Rensburg S, Demasius IP. 1978. Mutagenicity to Salmonella typhimurium of some Aspergillus and Penicillium mycotoxins. Mutat. Res. 58: 193-203. https://doi.org/10.1016/0165-1218(78)90009-5
  57. Wogan G, Edwards G, Newberne P. 1971. Structure-activity relationships in toxicity and carcinogenicity of aflatoxins and analogs. Cancer Res. 31: 1936-1942.
  58. Alberts JF, Engelbrecht Y, Steyn PS, Holzapfel WH, van Zyl WH. 2006. Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. Int. J. Food Microbiol. 109: 121-126. https://doi.org/10.1016/j.ijfoodmicro.2006.01.019
  59. Alberts JF, Gelderblom WC, Botha A, van Zyl WH. 2009. Degradation of aflatoxin B1 by fungal laccase enzymes. Int. J. Food Microbiol. 135: 47-52. https://doi.org/10.1016/j.ijfoodmicro.2009.07.022
  60. Sangare L, Zhao Y, Folly YME, Chang J, Li J, Selvaraj JN, et al. 2014. Aflatoxin B1 degradation by a Pseudomonas strain. Toxins 6: 3028-3040. https://doi.org/10.3390/toxins6103028
  61. Nakazato M, Morozumi S, Saito K, Fujinuma K, Nishima T, Kasai N. 1990. Interconversion of aflatoxin B1 and aflatoxicol by several fungi. Appl. Environ. Microbiol. 56: 1465-1470.
  62. Iram W, Anjum T, Iqbal M, Ghaffar A, Abbas M. 2015. Mass spectrometric identification and toxicity assessment of degraded products of aflatoxin B1 and B2 by Corymbia citriodora aqueous extracts. Sci. Rep. 5: 14672. https://doi.org/10.1038/srep14672
  63. Liu D-L, Yao D-S, Liang R, Ma L, Cheng W-Q, Gu L-Q. 1998. Detoxification of aflatoxin B1 by enzymes isolated from Armillariella tabescens. Food Chem. Toxicol. 36: 563-574. https://doi.org/10.1016/S0278-6915(98)00017-9
  64. Abbas HK, Williams WP, Windham GL, Pringle HC, Xie W, Shier WT. 2002. Aflatoxin and fumonisin contamination of commercial corn (Zea mays) hybrids in Mississippi. J. Agric. Food Chem. 50: 5246-5254. https://doi.org/10.1021/jf020266k
  65. Dorner JW, Cole RJ, Blankenship PD. 1998. Effect of inoculum rate of biological control agents on preharvest aflatoxin contamination of peanuts. Biol. Control 12: 171-176. https://doi.org/10.1006/bcon.1998.0634
  66. Farzaneh M, Shi Z-Q, Ghassempour A, Sedaghat N, Ahmadzadeh M, Mirabolfathy M, Javan-Nikkhah M. 2012. Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control 23: 100-106. https://doi.org/10.1016/j.foodcont.2011.06.018
  67. Abe K, Gomi K, Hasegawa F, Machida M. 2006. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia 162: 143-153. https://doi.org/10.1007/s11046-006-0049-2
  68. Taylor MJ, Richardson T. 1979. Applications of microbial enzymes in food systems and in biotechnology. Adv. Appl. Microbiol. 25: 7.

Cited by

  1. Toxins in Fermented Foods: Prevalence and Preventions—A Mini Review vol.11, pp.1, 2017, https://doi.org/10.3390/toxins11010004
  2. Prevalence and controlling mechanisms of mycotoxin vol.5, pp.1, 2017, https://doi.org/10.1080/23311932.2019.1658978
  3. Aflatoxin B 1 removal by three bacterial strains and optimization of fermentation process parameters vol.66, pp.6, 2019, https://doi.org/10.1002/bab.1807
  4. Toxigenicity and phylogeny of Aspergillus section Flavi in poultry feed in Iran vol.6, pp.1, 2017, https://doi.org/10.18502/cmm.6.1.2504
  5. Degradation and Detoxification of Aflatoxin B1 by Tea-Derived Aspergillus niger RAF106 vol.12, pp.12, 2017, https://doi.org/10.3390/toxins12120777
  6. Cumulative Production of Bioactive Rg3, Rg5, Rk1, and CK from Fermented Black Ginseng Using Novel Aspergillus niger KHNT-1 Strain Isolated from Korean Traditional Food vol.9, pp.2, 2017, https://doi.org/10.3390/pr9020227