DOI QR코드

DOI QR Code

Characterization of Dye Decolorization in Cell-Free Culture Broth of Trametes versicolor CBR43

  • Ryu, Hyun (College of Medicine, Korea University) ;
  • Ryu, Hee Wook (Department of Chemical Engineering, Soongsil University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • Received : 2016.08.04
  • Accepted : 2016.09.21
  • Published : 2017.01.28

Abstract

The dye decolorization rate in a cell-free culture broth of the white-rot fungus Trametes versicolor CBR43 was studied, including the effects of inhibitors of NaCl, Zn(II), and Cd(II) on dye decolorization activity. The maximum rates of dye decolorization in cell-free culture broth were 1,410, 44.7, 41.2, and $0.19{\mu}mol{\cdot}l^{-1}{\cdot}min^{-1}$ for Acid Blue 62, Acid Black 175, Reactive Blue 4, and Acid Red 114, respectively. The inhibition effects of NaCl, Zn(II), and Cd(II) on dye decolorization were quantitatively compared using the half maximal inhibition concentration ($IC_{50}$), which indicates the concentration of an inhibitor required for 50% inhibition. Based on $IC_{50}$ values, dye decolorization in the cell-free culture broth of CBR43 was most potently inhibited by Cd(II), whereas the inhibitory effect of NaCl was relatively low. The dye decolorization rates and $IC_{50}$ data can be used in the design and development of a dye-wastewater treatment process using T. versicolor CBR43 and its operating factors.

Keywords

References

  1. Singh H. 2006. Mycoremediation: Fungal Bioremediation, pp. 420-472. John Wiley & Sons, New Jersey.
  2. Singh RL, Singh PK, Singh RP. 2015. Enzymatic decolorization and degradation of azo dyes - a review. Int. Biodeterior. Biodegradation 104: 21-31. https://doi.org/10.1016/j.ibiod.2015.04.027
  3. Wesenberg D, Kyriakides I, Agathos SN. 2003, White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187. https://doi.org/10.1016/j.biotechadv.2003.08.011
  4. Cho KS, Ryu HW. 2015. Biodecolorization and biodegradation of dye by fungi: a review. Kor. Soc. Biotechnol. Bioeng. J. 30: 203-222.
  5. Heinfling A, Bergbauer M, Szewzyk U. 1997. Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. Appl. Microbiol. Biotechnol. 48: 261-266. https://doi.org/10.1007/s002530051048
  6. Young L, Yu J. 1997. Laccase-catalyzed decolorization of synthetic dyes. Water Res. 31: 1187-1193. https://doi.org/10.1016/S0043-1354(96)00380-6
  7. Yang XQ, Zhao XX, Liu CY, Zheng Y, Qian SJ. 2009. Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Proc. Biochem. 44: 1185-1189. https://doi.org/10.1016/j.procbio.2009.06.015
  8. Rodríguez Couto SR, Toca Herrera JL. 2006. Industrial and biotechnological applications of laccases: a review. Biotechnol. Adv. 24: 500-513. https://doi.org/10.1016/j.biotechadv.2006.04.003
  9. Winquist E, Moilanen U, Mettala A, Leisola M, Hatakka A. 2008. Production of lignin modifying enzymes on industrial waste material by solid-state cultivation of fungi. Biochem. Eng. J. 42: 128-132. https://doi.org/10.1016/j.bej.2008.06.006
  10. Eaton D, Chang HM, Kirk TK. 1980. Fungal decolorization of Kraft bleach plant effluent. Tappi J. 63: 103-109.
  11. Fujian X, Hongzhang C, Zuohu L. 2001. Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour. Technol. 80: 149-151. https://doi.org/10.1016/S0960-8524(01)00082-7
  12. Hakala TK, Lundell T, Galkin S, Maijala P, Kalkkinen N, Hatakka A. 2005. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme Microb. Technol. 36: 461-468. https://doi.org/10.1016/j.enzmictec.2004.10.004
  13. Kachlishvili E, Penninckx M, Tsiklauri N, Elisashvili V. 2006. Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World J. Microbiol. Biotechnol. 22: 391-397. https://doi.org/10.1007/s11274-005-9046-8
  14. Levin L, Herrmann C, Papinutti VL. 2008. Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem. Eng. J. 39: 207-214. https://doi.org/10.1016/j.bej.2007.09.004
  15. Li H, Zhang R, Tang L, Zhang J, Mao Z. 2015. Manganese peroxidase production from cassava residue by Phanerochaete chrysosporium in solid state fermentation and its decolorization of indigo carmine. Chinese J. Chem. Eng. 23: 227-233. https://doi.org/10.1016/j.cjche.2014.11.001
  16. Liang YS, Yuan XZ, Zeng GM, Hu CL, Zhong H, Huang DL, et al. 2010. Biodelignification of rice straw by Phanerochaete chrysosporium in the presence of dirhamnolipid. Biodegradation 21: 615-624. https://doi.org/10.1007/s10532-010-9329-0
  17. Pinto PA, Dias AA, Fraga I, Marques G, Rodrigues MAM, Colaco J, et al. 2012. Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment. Bioresour. Technol. 111: 261-267. https://doi.org/10.1016/j.biortech.2012.02.068
  18. Grassi E, Scodeller P, Filiel N, Carballo R, Levin L. 2011. Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. Int. Biodeterior. Biodegradation 65: 635-643. https://doi.org/10.1016/j.ibiod.2011.03.007
  19. Manel MK, Hela ZM, Lassaad B, Steve W, Tahar M. 2009. Malachite green decolourization and detoxification by the laccase from a newly isolated strain of Trametes sp. Int. Biodeterior. Biodegradation 63: 600-606. https://doi.org/10.1016/j.ibiod.2009.04.003
  20. Mechichi T, Mhiri N, Sayadi S. 2006. Remazol brilliant blue R decolourization by the laccase from Trametes trogii. Chemosphere 64: 998-1005. https://doi.org/10.1016/j.chemosphere.2005.12.061
  21. Si J, Peng F, Cui B. 2013. Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens. Bioresour. Technol. 128: 49-57. https://doi.org/10.1016/j.biortech.2012.10.085
  22. Cho KS, Lee JI, Hong S, Jung HK, Kim KW, Min DH, Ryu HW. 2016. Novel dye-decolorizing fungus, Bjerkandera adusta NIBRKDFPFGC000002676, and method for treating dye wastewaters using the same. Korean Patent 10-2016-0048219.
  23. Baccar R, Blanquez P, Bouzid J, Feki M, Attiya H, Sarra M. 2011. Decolorization of a tannery dye: from fungal screening to bioreactor application. J. Biochem. Eng. 56: 184-189. https://doi.org/10.1016/j.bej.2011.06.006
  24. Bibi I, Bhatti HN. 2012. Biodecolorization of reactive black 5 by laccase mediator system. Afr. J. Biotechnol. 11: 7464-7471.
  25. Yan J, Niu J, Chen D, Chen Y, Irbis C. 2014. Screening of Trametes strains for efficient decolorization of malachite green at high temperatures and ionic concentrations. Int. Biodeterior. Biodegradation 87: 109-115. https://doi.org/10.1016/j.ibiod.2013.11.009
  26. Wong L, Yu J. 1999. Laccase-catalyzed decolorization of synthetic dyes. Water Res. 33: 3512-3520. https://doi.org/10.1016/S0043-1354(99)00066-4
  27. Rodriguez Couto S, Sanroman MA. 2005. Application of solid-state fermentation to ligninolytic enzyme production. Biochem. Eng. J. 22: 211-219. https://doi.org/10.1016/j.bej.2004.09.013
  28. Si J, Cui BK. 2013. A new fungal peroxidase with alkalinetolerant, chloride-enhancing activity and dye decolorization capacity. J. Mol. Catal. B Enzym. 89: 6-14. https://doi.org/10.1016/j.molcatb.2012.12.002
  29. Zilly A, Coelho-Moreira JD, Bracht A, de Souza CGM, Carvajal AE, Koehnlein EA, Peralta RM. 2011. Influence of NaCl and $Na_2SO_4$ on the kinetics and dye decolorization ability of crude laccase from Ganoderma lucidum. Int. Biodeterior. Biodegradation 65: 340-344. https://doi.org/10.1016/j.ibiod.2010.12.007

Cited by

  1. Decolourization and detoxification of textile dyes by Lentinus arcularius in immersion bioreactor scale vol.17, pp.2, 2017, https://doi.org/10.1007/s13762-019-02519-9
  2. Comparative Genomics Uncovers the Genetic Diversity and Synthetic Biology of Secondary Metabolite Production of Trametes vol.48, pp.2, 2017, https://doi.org/10.1080/12298093.2020.1725361