DOI QR코드

DOI QR Code

Characterization of Water Treatment Membrane Using Various Hydrophilic Coating Materials

다양한 친수성 코팅소재를 이용한 수처리 분리막의 특성 평가

  • Park, Yun Hwan (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 박윤환 (경상대학교 나노신소재융합공학과 공학연구원) ;
  • 남상용 (경상대학교 나노신소재융합공학과 공학연구원)
  • Received : 2017.02.19
  • Accepted : 2017.02.23
  • Published : 2017.02.28

Abstract

Recently, the economic, social and environmental significance of the water industry is increasing significantly due to rapid global urbanization, population growth, and imbalance in demand and supply of water resulted by climate change. The type of these water industries are all different and they can be distinguished by the kinds of membranes used. Mainly, polymer materials that have excellent physical and chemical stability are used, but recently various methods of assigning hydrophilicity have been introduced due to their hydrophobic properties. In this study, hydrophilic polymers of four types were introduced into a commercially available hollow support to assign hydrophilicity. Furthermore, the morphology of the coated hollow support through FE-SEM was confirmed as well. Also the contact angle was measured to examine the degree of hydrophilicity of the coated hollow support with each polymer. Finally,.effect of different time on water permeability as well as the relationship between water permeability and hydrophilic polymers were investigated. As a result, the coating with 1 wt% of pluronic has good hydrophilicity degree, and shows the excellent water permeability without blocking the pore of the hollow fiber. Therefore, it can be concluded that the hydrophilic coating using pluronic polymer is most suitable as the water treatment.

최근 전 세계적으로 급속한 도시화, 인구증가 및 기후변화에 따른 물의 수요와 공급의 불균형으로 인해 물 산업의 경제, 사회, 환경적 중요성은 더욱 증가하고 있다. 이러한 물 산업은 크게 해당 분야에 따라 사용되는 분리막의 종류가 상이하다. 주로 물리적, 화학적 안정성이 매우 우수한 고분자 소재가 사용되고 있으나, 이들 고분자들의 소수성인 성질 때문에 친수성을 부여하는 다양한 방법들이 소개되고 있다. 본 연구에서는 상용화되어 있는 중공사 지지체에 총 4종류의 친수성 고분자들을 도입하여 친수성을 부여하였고, 주사전자현미경을 통해 코팅된 중공사 지지체의 모폴로지를 확인하였다. 또한, 각 고분자들로 코팅한 중공사 지지체의 친수화 정도를 알아보기 위해 접촉각을 측정하였고, 마지막으로 코팅 시간에 따른 수투과도 변화 그리고 친수성 고분자에 따라 수투과도에 미치는 영향을 확인하였다. 그 결과 Pluronic 1 wt%로 코팅하였을 때 친수화 정도가 우수하며 중공사의 기공을 막지 않고 우수한 수투과도 정도를 나타내 수처리 분리막으로 가장 적절하다는 결론을 얻을 수 있었다.

Keywords

References

  1. B. Nicolaisen, "Developments in membrane technology for water treatment", Desalination, 153, 1 (2003). https://doi.org/10.1016/S0011-9164(03)80004-8
  2. B. Jeong, E. M. Hoek, and Y. Yan, "Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes", J. Membr. Sci., 294, 1 (2007). https://doi.org/10.1016/j.memsci.2007.02.025
  3. W. R. Bowen and H. Mukhtar, "Characterisation and prediction of separation performance of nanofiltration membranes", J. Membr. Sci., 112, 2 (1996).
  4. E. Matthiasson, "The role of macromolecular adsorption in fouling of ultrafiltration membranes", J. Membr. Sci., 16 (1983).
  5. L. Song, "Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling", J. Membr. Sci., 139, 2 (1998).
  6. S. J. Kim, S. M. Woo, and H. Y. Hwang, "Preparation and properties of chlorine-resistance loose reverse osmosis hollow-fiber membrane", Membr. J., 20, 4 (2010).
  7. B. R. Jung and N. W. Kim, "Preparation and characterization of microfiltration membranes for water treatment", Membr. J., 24, 1 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.1.1
  8. H. D. Lee, Y. H. Cho, and H. B. Park, "Current research trends in water treatment membranes based on nano materials and nano technologies", Membr. J., 23, 2 (2013).
  9. Z. Xi, Y. Xu, L. Zhu, Y. Wang, and B. Zhu, "A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly (DOPA) and poly (dopamine)", J. Membr. Sci., 327, 1 (2009). https://doi.org/10.1016/j.memsci.2008.11.010
  10. M. Ulbricht, "Advanced functional polymer membranes", Polymer, 47, 7 (2006).
  11. S. Kaur, Z. Ma, R. Gopal, G. Singh, S. Ramakrishna, and T. Matsuura, "Plasma-induced graft copolymerization of poly (methacrylic acid) on electrospun poly (vinylidene fluoride) nanofiber membrane", Langmuir, 23, 26 (2007).
  12. P. Wang, K. Tan, E. Kang, and K. Neoh, "Plasma-induced immobilization of poly (ethylene glycol) onto poly (vinylidene fluoride) microporous membrane", J. Membr. Sci., 195, 1 (2002). https://doi.org/10.1016/S0376-7388(01)00662-7
  13. G. Moad, E. Rizzardo, and S. H. Thang, "Radical addition-fragmentation chemistry in polymer synthesis", Polymer, 49, 5 (2008).
  14. J. Chiefari, Y. Chong, and F. Ercole, "Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process", Macromolecules, 31, 16 (1998).
  15. F. Zhang, E. Kang, K. Neoh, P. Wang, and K. Tan, "Surface modification of stainless steel by grafting of poly (ethylene glycol) for reduction in protein adsorption", Biomaterials, 22, 12 (2001).
  16. Y. Zhao, B. Zhu, L. Kong, and Y. Xu, "Improving hydrophilicity and protein resistance of poly (vinylidene fluoride) membranes by blending with amphiphilic hyperbranched-star polymer", Langmuir, 23, 10 (2007).
  17. P. Li, H. Z. Chen, and T. Chung, "The effects of substrate characteristics and pre-wetting agents on PAN-PDMS composite hollow fiber membranes for $CO_2/N_2$ and $O_2/N_2$ separation", J. Membr. Sci., 434 (2013).
  18. M. Pasandideh-Fard, V. Pershin, S. Chandra, and J. Mostaghimi, "Splat shapes in a thermal spray coating process: simulations and experiments", J. Therm. Spray Technol., 11, 2 (2002).
  19. D. B. Hall, P. Underhill, and J. M. Torkelson, "Spin coating of thin and ultrathin polymer films", Polym. Eng. Sci., 38, 12 (1998).
  20. I. C. Kim and K. H. Lee, "Preparation of poly(vinyl alcohol)-coated composite nanofiltration membranes on various support membranes", Membr. J., 15, 1 (2005).
  21. D. S. Won, T. K. Kim, and Y. G. Lee, "Effects of low pressure and atmospheric pressure plasma treatment on contact angle of polycarbonate surface", Appl. Chem. Eng., 21, 1 (2010).
  22. A. Zularisam, A. Ismail, and R. Salim, "Behaviours of natural organic matter in membrane filtration for surface water treatment-a review", Desalination, 194, 1 (2006). https://doi.org/10.1016/j.desal.2005.10.022
  23. T. I. Yun, M. Y. Seo, H. I. Cho, S. Y. Ha, and J. Y. Rhim, "Study on performance of water vapor-permeation through hydrophilic polymer membranes", Membr. J., 16, 2 (2006).
  24. S. Tian, N. Ogata, N. Shimada, K. Nakane, T. Ogihara, and M. Yu, "Melt electrospinning from poly (L-lactide) rods coated with poly (ethylene-co-vinyl alcohol)", J. Appl. Polym. Sci., 113, 2 (2009).
  25. Y. Si, T. Ren, Y. Li, B. Ding, and J. Yu, "Fabrication of magnetic polybenzoxazine-based carbon nanofibers with $Fe_3O_4$ inclusions with a hierarchical porous structure for water treatment", Carbon, 50, 14 (2012).
  26. H. N. Jang, I. C. Kim, and Y. T. Lee, "Membrane permeation characteristics and fouling control through the coating of poly(vinyl alcohol) on PVDF membrane surface", Membr. J., 24, 4 (2014).