DOI QR코드

DOI QR Code

Observations of Treatment Efficiency and Fouling in Submerged Membrane Filtration Treating High-Turbidity Source Water

고탁도 원수대응 침지식 멤브레인 여과에서 공기폭기 및 용액조성에 따른 파울링 및 처리효율 관찰

  • Jang, Hoseok (Department of Environmental Engineering, Inha University) ;
  • Byun, Youngkwon (Department of Environmental Engineering, Inha University) ;
  • Kim, Jeonghwan (Department of Environmental Engineering, Inha University)
  • Received : 2017.02.15
  • Accepted : 2017.02.24
  • Published : 2017.02.28

Abstract

Transient behavior of fouling resistance was observed with a laboratory-scaled, submerged microfiltration membrane system treating high-turbidity source water consisting of inorganic silica particles and humic acid. Fouling mitigation efficiency with inorganic silica particles caused by aeration was reduced significantly as both humic acid and calcium ion existed together. Scanning electron microscopic observations showed that humic acid was adsorbed onto the surface of inorganic silica particles in the presence of calcium. Turbidity removal was achieved almost completely by submerged MF system regardless of feed compositions. However, the $UV_{254}$ removal of humic acid was improved in the presence of both calcium and inorganic silica particles. Additionally, increasing air-flow rate tended to increase $UV_{254}$ removal efficiency higher than 80%. This may be caused by back-transport of humic acid enhanced by inorganic silica particles providing surface for organic adsorption in the presence of calcium.

무기실리카 입자로 구성된 고탁도 원수를 처리하는 침지식 정밀여과 운전에서 휴민산과 2가 양이온의 존재유무에 따라 시간에 따른 파울링 저항을 관찰하였다. 공기폭기로 인한 무기실리카 입자의 파울링 감소효과는 휴민산과 칼슘이 혼합으로 존재 시 감소하였다. 파울링층의 전자현미경 관찰결과 칼슘의 존재 시 휴민산의 무기실리카 입자 표면흡착이 관찰되었다. 이는 멤브레인 표면에 조밀한 파울링층을 형성시켜 공기폭기 효과를 감소시킨 것으로 판단된다. 용액의 조성에 따른 고탁도 원수의 탁도 제거율에는 큰 변화가 없었으나 공기폭기량에 따라 칼슘과 무기실리카 입자의 혼합 존재 시 유기물질의 제거율은 80% 이상으로 증가하였다. 이는 공기폭기 하에 무기실리카 입자 표면에 흡착된 일부 휴민산들이 멤브레인 표면으로부터 함께 역수송 되어 유기물질 제거율을 증가시킨 것으로 사료된다.

Keywords

References

  1. M. Schulz, A. Soltani, X. Zheng, and M. Ernst, "Effect of inorganic colloidal water constituents on combined low-pressure membrane fouling with natural organic matter (NOM)", J. Membr. Sci., 507, 154 (2016). https://doi.org/10.1016/j.memsci.2016.02.008
  2. A. H. Taheri, L. N. Sim, C. T. Haur, E. Akhondi, and A. G. Fane, "The fouling potential of colloidal silica and humic acid and their mixtures", J. Membr. Sci., 433 112 (2013). https://doi.org/10.1016/j.memsci.2013.01.034
  3. J. Tian, Y. Xu, Z. Chen, J. Nan, and G. Li, "Air bubbling for alleviating membrane fouling of immersed hollow-fiber membrane for ultrafiltration of river water", Desalination, 260, 225 (2010). https://doi.org/10.1016/j.desal.2010.04.026
  4. S. R. Chae, H. Yamamura, B. Choi, and Y. Watanabe, "Fouling characteristics of pressurized and submerged PVDF (polyvinylidene fluoride) microfiltration membranes in a pilot-scale drinking water treatment system under low and high turbidity conditions", Desalination, 244, 215 (2009). https://doi.org/10.1016/j.desal.2008.05.025
  5. Y. Li, W. Zhang, X. Zhang, C. Chen, and J. Wang, "Characterization of fouling in immersed polyvinylidene fluoride hollow fibre membrane ultrafiltration by particles and natural organic matter", Desalin. Water Treat., 18, 309 (2010). https://doi.org/10.5004/dwt.2010.1814
  6. P. Choksuchart, M. Heran, and A. Grasmick, "Ultrafiltration enhanced by coagulation in an immersed membrane system", Desalination, 145, 265 (2002). https://doi.org/10.1016/S0011-9164(02)00421-6
  7. K. Konieczny, D. Sakol, and M. Bodzek, "Efficiency of the hybrid coagulation-ultrafiltration water treatment process with the use of immersed hollow-fiber membranes", Desalination, 198, 102 (2006). https://doi.org/10.1016/j.desal.2006.09.015
  8. D. Guibert, R. Ben Aim, H. Rabie, and P. Cote, "Aeration performance of immersed hollow-fiber membranes in a bentonite suspension", Desalination, 148, 395 (2002). https://doi.org/10.1016/S0011-9164(02)00752-X
  9. H. C. Kim and B. A. Dempsey, "Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM", J. Membr. Sci., 428, 190 (2013). https://doi.org/10.1016/j.memsci.2012.11.004
  10. Y. Liu, X. Li, Y. Yang, W. Ye, J. Ren, and Z. Zhou, "Effect of ionic strength and calcium ions on humic acid fouling of hollow-fiber ultrafiltration membrane", Desalin. Water Treat., 54, 2976 (2015). https://doi.org/10.1080/19443994.2014.908144
  11. Y. Hao, A. Moriya, T. Maruyama, Y. Ohmukai, and H. Matsuyama, "Effect of metal ions on humic acid fouling of hollow fiber ultrafiltration membrane", J. Membr. Sci., 376, 247 (2011). https://doi.org/10.1016/j.memsci.2011.04.035
  12. A. W. Zularisam, A. Ahmad, M. Sakinah, A. F. Ismail, and T. Matsuura, "Role of natural organic matter (NOM), colloidal particles, and solution chemistry on ultrafiltration performance", Sep. Purif. Technol., 78, 189 (2011). https://doi.org/10.1016/j.seppur.2011.02.001
  13. K. Katsoufidou, S. G. Yiantsios, and A. J. Karabelas, "Experimental study of ultrafiltration membrane fouling by sodium alginate and flux recovery by backwashing", J. Membr. Sci., 300, 137 (2007). https://doi.org/10.1016/j.memsci.2007.05.017
  14. H. Jang, D. Kwon, and J. Kim, "Understanding alginate fouling in submerged microfiltration membrane system for seawater pretreatment", Membr. J., 26, 55 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.55
  15. K. Rezwan, A. R. Studart, J. Voros, and L. J. Gauckler, "Change of potential of biocompatible colloidal oxide particles uponadsorption of bovine serum albumin and lysozyme", J. Phys. Chem. B, 109, 14469 (2005). https://doi.org/10.1021/jp050528w
  16. A. Majzik and E. Tombacz, "Interaction between humic acid and montmorillonite in the presence of calcium ions I. Interfacial and aqueous phase equilibria: Adsorption and complexation", Org. Geochem., 38, 1319 (2007). https://doi.org/10.1016/j.orggeochem.2007.04.003