
Journal of The Korea Society of Computer and Information

Vol. 22 No. 2, pp. 9-19, February 2017

www.ksci.re.kr

https://doi.org/10.9708/jksci.2017.22.02.009

Energy Use Coordinator for Multiple Personal Sensor Devices

1) Yunseok Rhee*

Abstract

Useful continuous sensing applications are increasingly emerging as a new class of mobile

applications. Meanwhile, open, multi-use sensor devices are newly adopted beyond smartphones, and

provide huge opportunities to expand potential application categories. In this upcoming environment,

uncoordinated use of sensor devices would cause severe imbalance in power consumption of devices,

and thus result in early shutdown of some sensing applications depending on power-hungry devices.

In this paper, we propose EnergyCordy, a novel inter-device energy use coordination system; with a

system-wide holistic view, it coordinates the energy use of concurrent sensing applications over

multiple sensor devices. As its key approach, we propose a relaxed sensor association; it decouples

the energy use of an application from specific sensor devices leveraging multiple context inference

alternatives, allowing flexible energy coordination at runtime. We demonstrated the effectiveness of

EnergyCordy by developing multiple example applications over custom-designed wearable senor

devices. We show that EnergyCordy effectively coordinates the power usage of concurrent sensing

applications over multiple devices and prevent undesired early shutdown of applications.

▸Keyword :pervasive computing, energy use, mobile sensors

I. Introduction

Continuous sensing applications have been increasingly

emerging as a new class of mobile applications [1,2,3].

Moreover, diverse personal sensing devices are

broadening application domains [4,5,6,7]; for example a

wristband-type sensor allows everyday activity tracking

and an earphone-type sensor is enabling daily monitoring

of heart rates. A well-known challenge for these

applications is to enable continuous sensing and

processing with limited battery power - usually until the

next expected recharging time [8,9].

Power management problem is becoming more

complicated as personal sensor devices are evolving

toward open, multi-use architecture; whereas many

current commercial devices have closed architecture

allowing only a few proprietary applications. Early effort

has been made to provide such generic devices with

programmable APIs, e.g., Angel [10] and Sensordrone

[11]. In the near future, a user will carry multiple such

sensors forming a distributed personal computing

environment.

In this upcoming multi-sensor environment, a new

∙First Author: Yunseok Rhee, Corresponding Author: Yunseok Rhee

*Yunseok Rhee(rheeys@hufs.ac.kr), Division of Computer and Electronic Systems Engineering, Hankuk Univ. of

Foreign Studies

∙Received: 2017. 02. 08, Revised: 2017. 02. 17, Accepted: 2017. 02. 23.

∙This work was supported by Hankuk University of Foreign Studies Research Fund of 2016.

10 Journal of The Korea Society of Computer and Information

challenge in power management will arise due to

inter-dependency of sensor use among concurrent

sensing applications. Such interdependency is mainly

cuased by collaborative and collective use of sensors,

e.g., offloading a sensing workload to another device or

fusing data from multiple devices. The dependency

becomes more complicated as concurrent applications

utilize different sets of devices, which could partially

overlap with each other. Given such inter-dependency,

uncoordinated uses of devices cause unnecessary

contention and early energy dissipation of some sensor

devices from the perspective of a whole system. For

example, applications that can employ another

energy-abundant device might contend for a

power-draining sensor with other applications. The

unnecessary contention limits availability of other

applications that cannot help using that sensor, harming

overall system capacity. It is almost impossible for

existing solutions limited to a device or an application to

handle the inter-dependency among multiple devices.

In this paper, we propose a novel energy use

coordination system, EnergyCordy, for multiple

open-architecture sensor devices comprising a personal

sensing environment. For closed- architecture sensor

environments, a usual power management approach has

been intra-device optimization [12,13]. In this approach,

the association between applications and sensor devices

Fig. 1. A holistic view on personal sensor devices.

is predetermined by developers and remains unchanged

throughout the application lifetime. The approach mainly

focuses on reducing applications’ battery use, for

example, by adjusting sensing rate or trading off

application’s functional fidelity. However, an optimized

solution for a dedicated device and an application is

highly limited in the open, multi-use sensor environment.

It is difficult to have overall comprehensive view of

energy distribution and available sensor devices as well

as other concurrent applications at runtime. Accordingly,

they cannot exploit opportunities to resolve contention on

specific sensors and prolong the lifetime of multiple

applications.

To address the challenges, EnergyCordy coordinates

the energy use of concurrent applications with a holistic

view of multiple sensor devices and their battery use,

instead of managing powers of individual devices

separately (Fig. 1). EnergyCordy carefully dispenses

limited battery power of distributed sensor devices to

competing applications in order to meet the

user-preferred goal for application operation. The

system-level support of EnergyCordy is essential as it is

hardly possible for individual applications to coordinate

their energy use with others in an application-level. Also,

EnergyCordy completely frees application developers

from complicated low-level energy management such as

energy availability monitoring and demand profiling.

As a key approach to inter-device power coordination,

we propose a relaxed sensor association approach. It

delays binding between sensors and applications until

runtime when a system has a clear picture of available

devices and their remaining battery, as well as running

applictions and their power use requirements. This

provides much flexibility to coordinate applications’

battery use, especially for a device that has little

remaining power and many competing applications. A key

prerequisite of this approach is to prepare diverse

alternative sensor mappings for each sensing application.

We observe that many sensing applications have

potentials to utilize alternative methods for sensing and

context processing; simply from using redundant sensor

data sources, to using different combinations of devices

placed on different body positions, and even to different

sensing modalities with corresponding recognition method

[14,15,16].

II. Motivation

2.1 Prototype Sensors

Prototype sensors: In order to reflect a prospective

environment of open, multi-use sensing platform, we have

designed four sensor devices to incorporate diverse

sensing modalities with general programmability support

(See Table 1 and Fig. 2). Each device basically has

Energy Use Coordinator for Multiple Personal Sensor Devices 11

inertial sensing modules, i.e., 3-axial gyroscope and

3-axial accelerometer. Also, we integrated additional

sensing modules matching to each wearing position, e.g.,

SpO2 sensor on the watch, and ECG sensor on the chest

sensor. We have packed the sensors into diverse

wearable forms and placed them on various body parts to

enable context monitoring, e.g., a right thigh, a chest, a

waist, and a left wrist. Each sensor device is powered by

a rechargeable Li-Polymer battery with 250mAh capacity.

Note that we tried to utilize custom-designed devices as

most of the commercially available devices are either not

programmable or limited in their sensing modalities. For

instance, Android-based smart watches usually support a

few sensing modalities such as accelerometer.

Prototype applications: We develop four applications

over the above devices: physical activity monitor,

heartbeat monitor, environment monitor, and fall detector.

Note that the applications are developed to demonstrate

the problem addressed by EnergyCordy and its

effectiveness, not to claim the novelty of the applications.

Table 1. Custom-designed personal sensor device

prototype: wearing position and specification

Physical activity monitor is an application to monitor a

user’s physical activities such as walking, sitting, and

bicycling by using wearable sensors. The activity

monitoring is important for many context-aware

applications to adapt their behavior to the current activity

of the user. Also, it can be used to track steps, distance,

and calories burned for people who are interested in

fitness. There has been much research for physical

activity monitoring using on-body accelerometers [15].

Fig. 2. Hardware and sensing modules of the personal

sensor device prototype.

Heartbeat monitor helps users keep their heart rate in

a proper level, for exercise efficiency or healthcare. For

example, optimal ranges are different according to

exercise goals, such as fat-burn or cardiovascular

training.

Environment monitor uses sensors to monitor

temperature, humidity, dust- or CO2-levels, to warn

against the air pollution and weather conditions according

to the user’s health status. It also enables real-time

cartography of the city’s air quality and weather maps

[16].

Fall detector employs wearable sensors to detect

falling. Falling is a frequent and risky event for elderly

people. One third of adults aged 65 years or older fall

each year, causing serious physiological injury [17].

Wearable sensors with accelerometer or gyroscope

enable to monitor the occurrence of a fall in real time and

anywhere, calling timely medical attention.

2.2 Motivating Cases

Under the above-described prototype environment, we

present an example scenario that describes a potential

problem of conflicts in energy use and how EnergyCordy

resolves it through coordination. Note that the energy

consumptions of the sensor devices in the case are based

on actual measurements with our prototypes.

A man in his sixties, living alone, wears a u-watch (d3)

equipped with an accelerometer and a SpO2 sensor with

remaining energy of 3300J. He also wears a u-shirt(d1) in

which an ECG sensor is embedded, currently with 1800J

of energy. Every day, he uses a heartbeat monitor

application to check his heart rate for a precaution

against abnormal condition. This application runs with the

SpO2 sensor in the u-watch, expecting longer running

time since its remaining energy is larger than the u-shirt.

It consumes energy at the rate of 663J/h and accordingly

the expected lifetime is 5.0 hours.

He finishes his breakfast and goes to his farm to work.

As he leaves his home, a fall detector application is

initiated to promptly cope with an accidental fall. This

application uses the accelerometer sensor in the u-watch

and consumes additional 142 J/hour. Although he expects

that applications will keep running until he comes back

home, the concurrent use of the applications on the

u-watch incurs the quick drain of energy. In consequence,

the energy of u-watch is depleted in a short running time

of 4.1 hours (See Fig. 3(a)). On depletion of u-watch, the

12 Journal of The Korea Society of Computer and Information

heartbeat monitor changes its sensing source into the

u-shirt instead, which still retains 1243J of energy after

4.1 hours of standby. Now the heartbeat monitor

continues by 4.3 additional hours (See Fig. 3(b)).

However, the fall detector is already disabled before he

comes back home.

EnergyCordy identifies and resolves this problem as

shown in Fig. 3(c). It allocates the u-watch solely for the

fall detector, and runs the heartbeat monitor with the

u-shirt. After serving heartbeat monitor for 6.3 hours, the

u-shirt’s energy is depleted. At this moment,

EnergyCordy rearranges the heartbeat monitor to use the

u-watch instead, which has the remaining energy of

1982J to serve the fall detector for 6.3 hours. From now

on, the u-watch begins serving both applications, lasting

for 2.4 hours. As a result, both applications are able to

run for 8.7 hours each and end up at the same time. Not

to mention that Souneil could come back home without

concerns about the discontinuity of application running.

Fig. 3. Energy use coordination: a simple example.

III. System Design

3.1 Architecture Overview

Fig. 4 shows the overall architecture of EnergyCordy

and the system environment. We design EnergyCordy as

a smartphone-centric architecture where multiple sensor

devices are connected to a smartphone in a star topology.

The smartphone plays a key role as a sensor manager,

which makes a holistic decision for energy

EnergyCordy

EnergyCordy

Fig. 4. Architecture overview for Energy

use coordination

coordination of sensors. Sensor devices execute sensing

and processing tasks as decided by the smartphone and

also report runtime energy status required for

coordination. Such centralized architecture facilitates

efficient system-wide coordination with a global view.

Also, a smartphone is a proper device to make the

decision since it is always available and has relatively

powerful computing and battery resources.

On a smartphone, EnergyCordy runs as a middleware

between sensing applications and a mobile OS. The

applications specify the type of contexts (e.g., location) of

their interest to EnergyCordy, along with the required

accuracy. The energy scheduler finds alternative energy

use options (EUs) for each application and determines the

schedule, EUSched. The adaptation trigger continuously

monitors available sensors and their energy status for

runtime resource adaptation. The EU executors on the

smartphone and sensors jointly process the selected EUs,

and notify the results of the applications. They execute

concurrent EUs in a shared manner; the same tasks

involved in multiple EUs are executed once and the

results are shared.

3.2 Preparing Multiple Energy Use Options

Fig. 4 To realize the relaxed sensor association

approach, multiple energy use options should be prepared

for each sensing application. Such options can be

prepared by exploiting the diversity in context recognition

methods and sensing modalities. First, they can be

generated by utilizing different combinations of sensors

placed on different body positions. For instance, falling

can be monitored with diverse combinations of inertial

sensors on different body limbs [14]. Second, the

Energy Use Coordinator for Multiple Personal Sensor Devices 13

ed= basek + ∑(TEMapk(taskk,m)) s.t. taskk,m∈ TSetk
i,jÈ

EUi,j∈P

where basek is the base energy demand of dk

diversity of sensing modalities can be exploited. A heart

rate monitor can utilize an ECG sensor, a SpO2 sensor, or

a pulsimeter. Also, running or walking activity can be

inferred from a location sensor or accelerometers [15].

Finally, multiple sensing modalities can be further fused in

diverse combinations; e.g., indoor localization can be done

by fusing camera, sound, Wi-Fi, and illumination [14].

To reduce the burden of developers, the system

prepares multiple energy use options for widely-used

contexts, e.g., activity, location, and heart rate, in

advance. As for such contexts, developers only need to

specify the type of contexts of interest. EnergyCordy

translates the context-level specification into multiple

energy use options prepared beforehand and uses them

for energy coordination. For the specification, we adopt

context monitoring query, from previous mobile sensing

platforms [1,5]. As for other application-specific

contexts, developers directly specify alternative options

to the system.

3.3 Energy Use Unit (EU)

EnergyCordy abstracts the energy use of an application

over distributed sensor devices as an energy use unit

(EU). An EU represents a set of devices and tasks

required to execute an energy use option, which

accordingly determines the energy use of an application

over the devices when using the option. An EU serves as

the basic unit for energy allocation and scheduling. Based

on the single, unified abstraction, the system can easily

deal with various applications running over heterogeneous

devices and flexibly apply diverse coordination policies.

Specifically, an EU, EUi,j for an application appi is

defined as a set of pairs (dk, TSetki,j), where dk is a

identifier of a device, and TSetki,j is the set of tasks on

the device dk required to execute the EUi,j. Note that we

explicitly regard inter-device data transmission as

separate tasks.

For energy use coordination, the energy demand of

each EU should be effectively accounted. EnergyCordy

accounts the energy demand in task-level, instead of

EU-level. This enables to estimate the energy use of a

sensor more accurately when multiple concurrent EUs use

the sensor in a shared manner. For example, when two

concurrent EUs run a FFT task on the same sensor, the

task-level accounting can effectively remove the overlap

during the demand calculation. To reflect such potential

concurrency in sensor use, the accounting is done at

runtime.

For energy use accounting, EnergyCordy maintains a

task-energy map, TEMapk, for each device, dk. Each map

contains the average energy consumption rate for every

task runnable on the device. We currently utilize an

offline profiling method to build a task-energy map. The

demand estimation through offline profiling works well in

our environment where each task usually performs

periodic operations at a fixed-time interval. Accordingly,

the energy consumption for such tasks is unlikely to

fluctuate over time.

Based on the task-energy map, EnergyCordy estimates

the energy demands on each sensor to execute a set of

EUs; the estimation is done by summing the energy

demand of each task involved in the EUs as well as the

base energy demand of the sensor. Given a set of EUs, P,

the energy demand ed on a sensor dk is estimated as

follows.

We assume that each task’s energy demand and their

total demand have a linear relationship. The method

works well with the the sensor prototypes and tasks we

used. To achieve better accuracy, it is also possible to

pre-profile the energy demand of all comibnations of task

sets.

3.4 Energy Monitoring

To monitor the energy availability of sensor devices,

the current prototype implementation uses the

voltage-based method [18]. This method estimates the

remaining energy based on voltage values. It is easy to

implement since many widely used sensor devices are

equipped with a voltage sensor giving real-time voltage

readings. We build maps that translate voltage values to

remaining energy, with which sensor voltage readings are

converted to estimated remaining energy at runtime.

While this method works reasonably well in our

environment, the estimation accuracy can be further

improved with hardware support. Elaborating on the

remaining energy estimation method and improving the

accuracy is beyond the scope of this paper, which is our

future work.

14 Journal of The Korea Society of Computer and Information

IV. Energy Use Coordination

4.1 Coordination Policy

The energy scheduler determines the best schedule to

apply the alternative EUs for each application. The key

challenge is that complex inter-dependency on the use of

diverse EUs for different applications. Multiple EUs might

have overlap on the sensor use among each other; it is

also true even on the EUs for a single application.

Accordingly, the execution of an EU for an application not

only affects the lifetime of the applications sharing the

sensors, but its effect is propagated to all applications on

the network. Also, due to the irreversible characteristics

of energy resource, a naïve EU selection at a moment

would continuously affect all other applications sharing

the same sensors, leaving no way to redeem the energy

loss by the mistrial. To address such issues, the energy

scheduler carefully analyzes the spatio-temporal

inter-dependency in sensor energy use among alternative

EUs, and generates a schedule over the whole time. As a

result, the schedule is built in the form of an energy use

schedule (EUSched), which represents timelines

associated with sequences of EUs to apply for all

applications.

l EUSched = {EUSeqi | EUSeqi is a sequence of

(EUi,m, ti,m) pairs over a timeline representing the

execution sequence of EUi,m and their duration, ti,m for

an application appi}

Through proper EUS generation, EnergyCordy

coordinates the energy use of multiple competing

applications, and prevents early shutdown of applications

and sensors.

EnergyCordy can flexibly incorporate diverse

coordination policies and algorithms to generate a

EUSched based on the EU abstraction. In the rest of this

section, we introduce three useful policies and related

EUSched generation algorithms to achieve the goals

defined for the policies.

4.2 Maximizing the Minimum Application Lifetime

Mobile sensing applications should run continuously to

monitor a user’s contexts and provide situation-aware

services. Accordingly, a user will want to maximize the

applications’ lifetime if the next recharging time is

unknown. For a policy to meet such a need of user, the

primary goal of EnergyCordy can be set to maximize the

minimum lifetime of any registered applications. In this

case, we assume that all applications have the same

priority; we address the situation that there are different

priorities later in this section.

To satisfy the goal, we devise a linear programming

(LP)-based method. Given a set of applications, AppSet,

and a set of sensors, SSet, the method determines the

optimal EUSched that best meets the goal under the

energy constraints of the sensors. To find the optimal

schedule, it is necessary to determine the order and

duration to apply EUs for all applications. However,

dealing with both duration and order as variables

complicates the constraint checking for linear

programming due to tasks sharing among concurrent EUs

and the following energy accounting. Thus, we introduce

the concept of co-execution plan Px that represents a set

of EUs concurrently executed for all applications at a

moment. Px not only simplifies the constraint evaluation

but also changes the non-linear balancing objective to

linear one, facilitating the problem formulation as below.

Px can be specified as follows.

Px ⊂ { EUi,j | there must exist an EUi,j for all 1≤i≤

N,

and a ≠c for any two EUa,b and EUc,d }, for 1 ≤ x ≤

MN, where M is the maximum number of EUs and N is

the total number of registered applications.

The energy demand to execute Px is defined as a

vector Ex = (ex,1, …, ex,k, …, ex,L) where ex,k

represents the energy consumption rate of a sensor, sk,

to execute Px. Now, the balancing problem can be

formulated as follows:

, where tx is the time duration to apply Px.

As noted, the non-linear optimization goal (to maximize

the minimum lifetime of applications) is transformed into

the linear goal (to maximize the lifetime to run a set of

Px). Since a Px contains an EU for every application,

maximizing the total durations to apply Px, i.e., ,

guarantees to maximize the minimum lifetime. This allows

applying conventional solutions for linear programming.

The LP-based method can be practically applied only

with a small number of applications and their EUs, e.g.,

about under 10, since the time complexity is exponential.

Note that the problem itself is NP-hard and can be

reduced from another NP-hard problem, 3-dimensional

Energy Use Coordinator for Multiple Personal Sensor Devices 15

matching problem.

To deal with a case that a user uses a large number of

sensors and applications, we also develop a heuristic

solution. The key idea is to arrange EUs for each

application with an altruistic principle; it forces an

application having diverse EU options with relatively rich

energy availability to yield resources with high

competition to other applications having few EU options

with scarce energy resources. Each application is allowed

to use resources with high competition only after it

exhausts resources with low competition. This makes

applications with fewer options to preferentially occupy

the energy resources with high competition. Thus, the

lifetime gap among the queries can be significantly

narrowed.

V. Experiments and Evaluation

5.1 Prototype Development

We have implemented the smartphone-side

architecture of EnergyCordy on Android SDK 2.3 and

deployed it on Google Nexus One. The total LoC are

about 9,500. We connect one base sensor device to the

smartphone via Bluetooth to support ZigBee

communication between the smartphone and sensor

devices. To support various sensing applications and their

energy use options, EnergyCordy incorporates 42 types

of tasks commonly used for feature extraction and

context recognition.

The sensor-side architecture is implemented in NesC

on top of TinyOS 1.1.11 and is deployed on four types of

personal sensor devices presented in Section 2.1. The

LoC are about 2,500. The implementation is based on

event-driven concurrency model of TinyOS. To support

diverse mobile sensing applications as a general-purpose

sensing platform, we implemented the functionality that

allows dynamic allocation and deallocation of tasks. Each

sensor task is implemented as a TinyOS event handler,

including sensing, feature extraction, and status reporting.

To dynamically execute the assigned tasks, we

implemented a job scheduler that executes the assigned

tasks in given order and frequency. The current

implementation includes a set of frequency-domain

feature extraction tasks, e.g., FFT, and time-domain

statistical feature extraction tasks, e.g., norm and RMS.

Note that a sensing module is powered on only when the

corresponding sensing task is allocated for energy saving.

To save highly limited sensor memory space, we

implemented a shared sensing data buffer for multiple

feature extraction tasks using the same sensing source.

The prototype consumes about 26.2 Kbytes of program

memory and 1.1 Kbytes of RAM.

Fig. 5. Energy profiling.

5.2 Energy Use Estimation

Energy demand profiling: We first build the

task-energy map for prototype sensors through offline

profiling. To facilitate the profiling for diverse tasks,

EnergyCordy provides an energy profiling tool. It

semi-automatically measures energy consumption per unit

time using an Agilent 34410A digital multimeter. A part of

the results are summarized in Fig. 5. Fig. 5 (a) and (b)

show the average energy consumption of common tasks

on all sensors and sensor-specific tasks, respectively. We

noticed slight differences in energy demand even between

the same types of sensor devices. To compensate the

error, we adjusted the energy demand profile for each

device. Fig. 5 (c) shows the base energy consumption of

each device, i.e., the energy consumed when it performs

only primitive EnergyCordy operations; transmission of

heartbeat and voltage messages for notifying the

smartphone of its presence and energy status. Fig. 5 (d)

shows the average energy consumption of transmission

16 Journal of The Korea Society of Computer and Information

tasks as the number of transmitted packets increases. We

observe that the energy consumption almost linearly

increases with the number of packets.

Energy availability monitoring: Fig. 6 shows voltage to

remaining energy graphs we obtained from experiments.

The experiments were conducted based on two different

sensor devices with a rechargeable 250mAh Li-polymer

battery. To evaluate the applicability of our method, we

conduct experiments with a range of setting, i.e., different

sensor devices running different tasks; (1) (d1, base), (2)

(d1, ECG), (3) (d2, base). The graphs show the similar

pattern overall although there is a little variation between

them. Interestingly, voltage values do not decrease

linearly. They slowly decrease when the amount of

remaining energy is relatively large. When the remaining

energy is smaller than 300J, the values sharply decrease.

EU execution time estimation: Table 2 shows the

estimated lifetime and measured one for five different

cases. We intentionally used the batteries with different

initial energy to test the accuracy of our estimation in

diverse potential system conditions. We measured the real

lifetime of a device by executing given task set on the

device until it exhausts its energy. Compared with the

measured one, the estimated execution time is fairly

accurate with an error of smaller than 8.2% on average.

This shows that our estimation method reasonably works

well. We observed that the estimation error tends to

slightly increase when the amount of remaining energy is

relatively large. This is because the error of remaining

energy estimation is likely to increase with relatively

large voltage value as discussed before.

Table 2. EU execution time estimation

We evaluate the estimation accuracy of EU execution

time based on estimated energy demand and remaining

energy. The execution time of an EU is determined by

the minimum lifetime of the associated sensor devices.

The lifetime of a device is estimated as its expected

remaining energy divided by the energy demand of the

EU on the device.

Fig. 6. Voltage-to-remaining energy map

5.3 Evaluation of the EnergyCordy Coordination

5.3.1 Experimental Setup

Energy use options: based on the prototype system and

devices, we have developed the energy use options of the

four example applications. Table 3 shows the EUs and

their associated devices, task sets, and utility level; we

represent the utility of an EU in three levels according to

the recognition accuracy: high, medium, and low.

Physical activity monitor: we developed three

alternative EUs using different combinations of

accelerometer sensors for activity monitoring.

Fall detector: many methods have been proposed by

using on-body accelerometers and gyroscopes to detect

the occurrence of a fall. We implemented multiple EUs

based on several of these methods using different sensor

placement, sensor set, and accuracy.

Table 3. Alternative EUs of example applications

Energy Use Coordinator for Multiple Personal Sensor Devices 17

Fig. 7. Lifetime of applications

Fig. 8. Lifetime with different utility requirement

Heartbeat monitor: there are two major methods of

heartbeat monitoring: one using ECG sensor on a chest

and another using SpO2 sensor on a finger. The former

usually provides better accuracy, but more expensive and

less com-fortable than the latter. We developed two EUs

using ECG sensor on d1 and SpO2 sensor on d3.

Environment monitor: the initial implementation of the

application monitors current weather status such as

temperature, pressure, and illumination. This application

has only a single EU.

Alternative systems: for comparison, we implemented

three alternative energy coordination systems as

following:

NonAdaptive: it is a basic mobile sensing system that

utilizes a single, fixed processing logic for each

application that provides the best recognition accuracy or

the most energy efficiency.

UseRate: it adopts the concept of the budget

distribution from [19]. It distributes the energy budget of

each sensor to applications, proportionally to the number

of the applications of which EUs use the sensor. For

example, the activity monitor acquires one half of the

available energy of d1(on thigh), since only two

applications use the sensor.

Separate: it represents an application-driven energy

coordination system. Each application directly arranges its

EUs to achieve the coordination goal, independently of

other applications.

EnergyCordy setting: for all experiments, we set the

initial energy of sensor devices to 3,330J; this value

represents the fully-charged energy of 250mAh battery.

However, it is very difficult to precisely adjust the

remaining energy of the real battery. To overcome this,

we obtain the remaining energy of sensor devices by

subtracting the consuming energy from the initial value,

instead of the estimation from the battery voltage. By

default, we set the accuracy requirement of the

applications to the medium level; EnergyCordy does not

exploit EUs that have the low level.

5.3.2 Maximizing the Minimum Application Lifetime

We evaluate the performance of EnergyCordy with the

policy that maximize the minimum of application lifetimes.

Fig. 7 presents the lifetime of the applications on

different systems. On this policy, the alternative systems

arrange EUs to maximize the lifetime of each application,

i.e., an energy efficient EU in prior to a less efficient EU.

The result shows that EnergyCordy achieves more

balanced lifetime than other systems. On EnergyCordy,

the minimum lifetime is 554 minutes of heartbeat monitor,

whereas NonAdaptive, UseRate and Separate provide 302,

197, and 404 minutes of the minimum lifetime,

respectively. NonAdaptive shows most skewed lifetimes

because each application has only a single EU and thus

the achieved lifetime is proportional to the energy

demand of the EU. Interestingly, UseRate shows much

shorter lifetimes than other systems. This is because it

cannot fully exploit the available energy of the sensors; it

executes EUs only within the allocated budget to the

applications even if the devices have remaining energy.

We also evaluate the coordination effect of EnergyCordy

with different utility requirements; High, Medium, and

Low. Fig. 8 depicts the results. Regardless of the utility

level, the lifetimes of the applications are well balanced

on EnergyCordy. The minimum lifetime for High, Medium,

and Low is 473, 554, and 592 minutes, respectively. As

the requirement lowers, the achieved lifetime of

applications increases. This is because lower requirement

allows EnergyCordy to utilize more EUs and thus

provides more opportunities in coordinating the

applications’ energy use.

18 Journal of The Korea Society of Computer and Information

VI. Conclusions

In this paper, we propose EnergyCordy, a novel

inter-device energy use coordination system; with a

system-wide holistic view, it coordinates energy use over

multiple sensor devices by concurrent sensing

applications. As a key approach, we propose a relaxed

sensor association. It decouples the energy use of an

application from specific sensor devices, allowing flexible

contention resolution at runtime. More specifically, it

prepares multiple energy use options (EU) that use

different sensor combinations, and schedules the order

and duration to apply EUs for coordinated energy use. We

demonstrated the effectiveness of EnergyCordy by

developing multiple example applications over diverse

custom-designed senor devices.

The result shows that EnergyCordy achieves much

more balanced lifetime than other systems such as

NonAdaptive which shows most skewed lifetimes because

each application has only a single EU and thus the

achieved lifetime is proportional to the energy demand of

the EU. Regardless of the utility level, the lifetimes of the

applications are also well balanced on EnergyCordy. We

conclude that EnergyCordy effectively coordinates energy

use of concurrent applications over multiple sensor

devices and prevent undesired early shutdown of an

application.

REFERENCES

[1] Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel

Peebles, Tanzeem Choudhury, and Andrew T. Campbell,

“A Survey of Mobile Phone Sensing,” IEEE

Communication vol. 9, no. 5, pp. 686-702, May 2010.

[2] Ozgur Yurur, Chi Harold Liu, Zhengguo Sheng, Victor

C. M. Leung, Wilfrido Moreno, and Kin K. Leung,

"Context-Awareness for Mobile Sensing: A Survey and

Future Directions", IEEE Communications Surveys &

Tutorials, vol. 18, issue 1, pp. 68-93, 2016.

[3] Takamasa Higuchi, Hirozumi Yamaguchi, and Teruo

Higashino, "Mobile Devices as an Infrastructure: A

Survey of Opportunistic Sensing Technology", Journal

of Information Processing, vol. 23, no. 2, pp. 94-104,

2015.

[4] Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Lncel,

Hans Scholten, and Paul J. M. Havinga, "A Survey of Online

Activity Recognition Using Mobile Phones", Sensors, vol.

15, no. 1, pp. 2059-2085, 2015.

[5] V. Agarwal, N. Banerjee, D. Chakraborty, and S. Mittal,

“USense – A Smartphone Middleware for Community

Sensing,” IEEE International Conference on Mobile Data

Management, volume 1, pp. 56–65. IEEE, June 2013.

[6] K. Lorincz, B.-r.Chen, G.W. Challen, A.R. Chowdhury,

S. Patel, P. Bonato, and M. Welsh, “Mercury: a wearable

sensor network platform for high-fidelity motion

analysis,” Proc. SenSys, 2009.

[7] U. Maurer, A. Smailagic, D.P. Siewiorek, and M. Deisher,

“Activity recognition and monitoring using multiple

sensors on different body positions,” Proc. BSN, 2006.

[8] Y. Lee, Y. Ju, C. Min, S. Kang, I. Hwang, and J. Song,

“CoMon: Cooperative Ambience Monitoring Platform with

Continuity and Benefit Awareness,” Proc. MobiSys, 2012.

[9] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao,

“Energy-accuracy trade-off for continuous mobile

device location,” Proc. MobiSys, 2010.

[10] Angel, the open sensor for health and fitness. http://

angelsensor.com/

[11] Sensordrone. http://sensorcon.com/sensordrone/

[12] Y. Fei, L. Zhong, and N.K. Jha, “An energy-aware

framework for dynamic software management in mobile

computing systems,” ACM Transactions on Embedded

Computing Systems, vol. 7, issue 3, article no. 27, April

2008.

[13] A. Lachenmann, P.J. Marron, D. Minder, and K. Rothermel,

“Meeting lifetime goals with energy levels,” Proc.

SenSys, 2007.

[14] M. Azizyan, I. Constandache, and R.R. Choudhury,

“SurroundSense: mobile phone localization via

ambience fingerprinting,” Proc. MobiCom, 2009.

[15] L. Bao and S.S. Intille, “Activity recognition from

user-annotated acceleration data,” Proc. Pervasive,

2004.

[16] M. Budde, R.E. Masri, T. Riedel, and M. Beigl, “Enabling

low-cost particulate matter measurement for

participatory sensing scenarios,” Proc. Int’l Conf. on

Mobile and Ubiquitous Multimedia (MUM), 2013.

[17] Q. Li, J.A. Stankovic, M.A. Hanson, A.T. Barth, J. Lach,

and G. Zhou, “Accurate, fast fall detection using

gyroscopes and accelerometer-derived posture

information,” Proc. BSN, 2009.

Energy Use Coordinator for Multiple Personal Sensor Devices 19

[18] A. Lachenmann, P.J. Marron, D. Minder, and K. Rothermel,

“Meeting lifetime goals with energy levels,” Proc.

SenSys, 2007.

[19] H. Zeng, C.S. Ellis, A.R. Lebeck, and A. Vahdat,

“ECOSystem: managing energy as a first class operating

system resource,” Proc. ASPLOS-X, 2002.

Authors

Yunseok Rhee received the B.S. degree
in Computer Science and Statistics from
Seoul National University, Korea in 1984
and the Ph.D degree in Computer
Science from KAIST, Korea in 1999
respectively.

 He is currently a Professor in the Division of Computer
and Electronic Systems Engineering at Hankuk University
of Foreign Studies. His current research interests
include context-aware systems, embedded systems, and
internet services.

