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Abstract

Useful continuous sensing applications are increasingly emerging as a new class of mobile 

applications. Meanwhile, open, multi-use sensor devices are newly adopted beyond smartphones, and 

provide huge opportunities to expand potential application categories. In this upcoming environment, 

uncoordinated use of sensor devices would cause severe imbalance in power consumption of devices, 

and thus result in early shutdown of some sensing applications depending on power-hungry devices. 

In this paper, we propose EnergyCordy, a novel inter-device energy use coordination system; with a 

system-wide holistic view, it coordinates the energy use of concurrent sensing applications over 

multiple sensor devices. As its key approach, we propose a relaxed sensor association; it decouples 

the energy use of an application from specific sensor devices leveraging multiple context inference 

alternatives, allowing flexible energy coordination at runtime. We demonstrated the effectiveness of 

EnergyCordy by developing multiple example applications over custom-designed wearable senor 

devices. We show that EnergyCordy effectively coordinates the power usage of concurrent sensing 

applications over multiple devices and prevent undesired early shutdown of applications.

▸Keyword :pervasive computing, energy use, mobile sensors

I. Introduction

Continuous sensing applications have been increasingly 

emerging as a new class of mobile applications [1,2,3]. 

Moreover, diverse personal sensing devices are 

broadening application domains [4,5,6,7]; for example a 

wristband-type sensor allows everyday activity tracking 

and an earphone-type sensor is enabling daily monitoring 

of heart rates. A well-known challenge for these 

applications is to enable continuous sensing and 

processing with limited battery power - usually until the 

next expected recharging time [8,9]. 

Power management problem is becoming more 

complicated as personal sensor devices are evolving 

toward open, multi-use architecture; whereas many 

current commercial devices have closed architecture 

allowing only a few proprietary applications. Early effort 

has been made to provide such generic devices with 

programmable APIs, e.g., Angel [10] and Sensordrone 

[11]. In the near future, a user will carry multiple such 

sensors forming a distributed personal computing 

environment.

In this upcoming multi-sensor environment, a new 
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challenge in power management will arise due to 

inter-dependency of sensor use among concurrent 

sensing applications. Such interdependency is mainly 

cuased by collaborative and collective use of sensors, 

e.g., offloading a sensing workload to another device or 

fusing data from multiple devices. The dependency 

becomes more complicated as concurrent applications 

utilize different sets of devices, which could partially 

overlap with each other. Given such inter-dependency, 

uncoordinated uses of devices cause unnecessary 

contention and early energy dissipation of some sensor 

devices from the perspective of a whole system. For 

example, applications that can employ another 

energy-abundant device might contend for a 

power-draining sensor with other applications. The 

unnecessary contention limits availability of other 

applications that cannot help using that sensor, harming 

overall system capacity. It is almost impossible for 

existing solutions limited to a device or an application to 

handle the inter-dependency among multiple devices. 

In this paper, we propose a novel energy use 

coordination system, EnergyCordy, for multiple 

open-architecture sensor devices comprising a personal 

sensing environment. For closed- architecture sensor 

environments, a usual power management approach has 

been intra-device optimization [12,13]. In this approach, 

the association between applications and sensor devices

 

Fig. 1. A holistic view on personal sensor devices.

is predetermined by developers and remains unchanged 

throughout the application lifetime. The approach mainly 

focuses on reducing applications’ battery use, for 

example, by adjusting sensing rate or trading off 

application’s functional fidelity. However, an optimized 

solution for a dedicated device and an application is 

highly limited in the open, multi-use sensor environment. 

It is difficult to have overall comprehensive view of 

energy distribution and available sensor devices as well 

as other concurrent applications at runtime. Accordingly, 

they cannot exploit opportunities to resolve contention on 

specific sensors and prolong the lifetime of multiple 

applications. 

To address the challenges, EnergyCordy coordinates 

the energy use of concurrent applications with a holistic 

view of multiple sensor devices and their battery use, 

instead of managing powers of individual devices 

separately (Fig. 1). EnergyCordy carefully dispenses 

limited battery power of distributed sensor devices to 

competing applications in order to meet the 

user-preferred goal for application operation. The 

system-level support of EnergyCordy is essential as it is 

hardly possible for individual applications to coordinate 

their energy use with others in an application-level. Also, 

EnergyCordy completely frees application developers 

from complicated low-level energy management such as 

energy availability monitoring and demand profiling.

As a key approach to inter-device power coordination, 

we propose a relaxed sensor association approach. It 

delays binding between sensors and applications until 

runtime when a system has a clear picture of available 

devices and their remaining battery, as well as running 

applictions and their power use requirements. This 

provides much flexibility to coordinate applications’ 

battery use, especially for a device that has little 

remaining power and many competing applications. A key 

prerequisite of this approach is to prepare diverse 

alternative sensor mappings for each sensing application. 

We observe that many sensing applications have 

potentials to utilize alternative methods for sensing and 

context processing; simply from using redundant sensor 

data sources, to using different combinations of devices 

placed on different body positions, and even to different 

sensing modalities with corresponding recognition method 

[14,15,16].

II. Motivation

2.1 Prototype Sensors

Prototype sensors: In order to reflect a prospective 

environment of open, multi-use sensing platform, we have 

designed four sensor devices to incorporate diverse 

sensing modalities with general programmability support 

(See Table 1 and Fig. 2). Each device basically has 
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inertial sensing modules, i.e., 3-axial gyroscope and 

3-axial accelerometer. Also, we integrated additional 

sensing modules matching to each wearing position, e.g., 

SpO2 sensor on the watch, and ECG sensor on the chest 

sensor. We have packed the sensors into diverse 

wearable forms and placed them on various body parts to 

enable context monitoring, e.g., a right thigh, a chest, a 

waist, and a left wrist. Each sensor device is powered by 

a rechargeable Li-Polymer battery with 250mAh capacity. 

Note that we tried to utilize custom-designed devices as 

most of the commercially available devices are either not 

programmable or limited in their sensing modalities. For 

instance, Android-based smart watches usually support a 

few sensing modalities such as accelerometer.  

Prototype applications: We develop four applications 

over the above devices: physical activity monitor, 

heartbeat monitor, environment monitor, and fall detector. 

Note that the applications are developed to demonstrate 

the problem addressed by EnergyCordy and its 

effectiveness, not to claim the novelty of the applications. 

Table 1. Custom-designed personal sensor device 

prototype: wearing position and specification 

Physical activity monitor is an application to monitor a 

user’s physical activities such as walking, sitting, and 

bicycling by using wearable sensors. The activity 

monitoring is important for many context-aware 

applications to adapt their behavior to the current activity 

of the user. Also, it can be used to track steps, distance, 

and calories burned for people who are interested in 

fitness. There has been much research for physical 

activity monitoring using on-body accelerometers [15].

Fig. 2. Hardware and sensing modules of the personal 

sensor device prototype.

Heartbeat monitor helps users keep their heart rate in 

a proper level, for exercise efficiency or healthcare. For 

example, optimal ranges are different according to 

exercise goals, such as fat-burn or cardiovascular 

training. 

Environment monitor uses sensors to monitor 

temperature, humidity, dust- or CO2-levels, to warn 

against the air pollution and weather conditions according 

to the user’s health status. It also enables real-time 

cartography of the city’s air quality and weather maps 

[16].

Fall detector employs wearable sensors to detect 

falling. Falling is a frequent and risky event for elderly 

people. One third of adults aged 65 years or older fall 

each year, causing serious physiological injury [17]. 

Wearable sensors with accelerometer or gyroscope 

enable to monitor the occurrence of a fall in real time and 

anywhere, calling timely medical attention.

2.2 Motivating Cases

Under the above-described prototype environment, we 

present an example scenario that describes a potential 

problem of conflicts in energy use and how EnergyCordy 

resolves it through coordination. Note that the energy 

consumptions of the sensor devices in the case are based 

on actual measurements with our prototypes.

A man in his sixties, living alone, wears a u-watch (d3) 

equipped with an accelerometer and a SpO2 sensor with 

remaining energy of 3300J. He also wears a u-shirt(d1) in 

which an ECG sensor is embedded, currently with 1800J 

of energy. Every day, he uses a heartbeat monitor 

application to check his heart rate for a precaution 

against abnormal condition. This application runs with the 

SpO2 sensor in the u-watch, expecting longer running 

time since its remaining energy is larger than the u-shirt. 

It consumes energy at the rate of 663J/h and accordingly 

the expected lifetime is 5.0 hours.

He finishes his breakfast and goes to his farm to work. 

As he leaves his home, a fall detector application is 

initiated to promptly cope with an accidental fall. This 

application uses the accelerometer sensor in the u-watch 

and consumes additional 142 J/hour. Although he expects 

that applications will keep running until he comes back 

home, the concurrent use of the applications on the 

u-watch incurs the quick drain of energy. In consequence, 

the energy of u-watch is depleted in a short running time 

of 4.1 hours (See Fig. 3(a)). On depletion of u-watch, the 
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heartbeat monitor changes its sensing source into the 

u-shirt instead, which still retains 1243J of energy after 

4.1 hours of standby. Now the heartbeat monitor 

continues by 4.3 additional hours (See Fig. 3(b)). 

However, the fall detector is already disabled before he 

comes back home. 

EnergyCordy identifies and resolves this problem as 

shown in Fig. 3(c). It allocates the u-watch solely for the 

fall detector, and runs the heartbeat monitor with the 

u-shirt. After serving heartbeat monitor for 6.3 hours, the 

u-shirt’s energy is depleted. At this moment, 

EnergyCordy rearranges the heartbeat monitor to use the 

u-watch instead, which has the remaining energy of 

1982J to serve the fall detector for 6.3 hours. From now 

on, the u-watch begins serving both applications, lasting 

for 2.4 hours. As a result, both applications are able to 

run for 8.7 hours each and end up at the same time. Not 

to mention that Souneil could come back home without 

concerns about the discontinuity of application running.

Fig. 3. Energy use coordination: a simple example.

III. System Design

3.1 Architecture Overview

Fig. 4 shows the overall architecture of EnergyCordy 

and the system environment. We design EnergyCordy as 

a smartphone-centric architecture where multiple sensor 

devices are connected to a smartphone in a star topology. 

The smartphone plays a key role as a sensor manager, 

which makes a holistic decision for energy

EnergyCordy

EnergyCordy

Fig. 4. Architecture overview for Energy 

use coordination

coordination of sensors. Sensor devices execute sensing 

and processing tasks as decided by the smartphone and 

also report runtime energy status required for 

coordination. Such centralized architecture facilitates 

efficient system-wide coordination with a global view. 

Also, a smartphone is a proper device to make the 

decision since it is always available and has relatively 

powerful computing and battery resources. 

On a smartphone, EnergyCordy runs as a middleware 

between sensing applications and a mobile OS. The 

applications specify the type of contexts (e.g., location) of 

their interest to EnergyCordy, along with the required 

accuracy. The energy scheduler finds alternative energy 

use options (EUs) for each application and determines the 

schedule, EUSched. The adaptation trigger continuously 

monitors available sensors and their energy status for 

runtime resource adaptation. The EU executors on the 

smartphone and sensors jointly process the selected EUs, 

and notify the results of the applications. They execute 

concurrent EUs in a shared manner; the same tasks 

involved in multiple EUs are executed once and the 

results are shared.

 

3.2 Preparing Multiple Energy Use Options

Fig. 4 To realize the relaxed sensor association 

approach, multiple energy use options should be prepared 

for each sensing application. Such options can be 

prepared by exploiting the diversity in context recognition 

methods and sensing modalities. First, they can be 

generated by utilizing different combinations of sensors 

placed on different body positions. For instance, falling 

can be monitored with diverse combinations of inertial 

sensors on different body limbs [14]. Second, the 
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ed= basek + ∑(TEMapk(taskk,m)) s.t. taskk,m∈ TSetk
i,jÈ

EUi,j∈P

where basek is the base energy demand of dk

diversity of sensing modalities can be exploited. A heart 

rate monitor can utilize an ECG sensor, a SpO2 sensor, or 

a pulsimeter. Also, running or walking activity can be 

inferred from a location sensor or accelerometers [15]. 

Finally, multiple sensing modalities can be further fused in 

diverse combinations; e.g., indoor localization can be done 

by fusing camera, sound, Wi-Fi, and illumination [14]. 

To reduce the burden of developers, the system 

prepares multiple energy use options for widely-used 

contexts, e.g., activity, location, and heart rate, in 

advance. As for such contexts, developers only need to 

specify the type of contexts of interest. EnergyCordy 

translates the context-level specification into multiple 

energy use options prepared beforehand and uses them 

for energy coordination. For the specification, we adopt 

context monitoring query, from previous mobile sensing 

platforms [1,5]. As for other application-specific 

contexts, developers directly specify alternative options 

to the system.

3.3 Energy Use Unit (EU)

EnergyCordy abstracts the energy use of an application 

over distributed sensor devices as an energy use unit 

(EU). An EU represents a set of devices and tasks 

required to execute an energy use option, which 

accordingly determines the energy use of an application 

over the devices when using the option. An EU serves as 

the basic unit for energy allocation and scheduling. Based 

on the single, unified abstraction, the system can easily 

deal with various applications running over heterogeneous 

devices and flexibly apply diverse coordination policies.

Specifically, an EU, EUi,j for an application appi is 

defined as a set of pairs (dk, TSetki,j), where dk is a 

identifier of a device, and TSetki,j is the set of tasks on 

the device dk required to execute the EUi,j. Note that we 

explicitly regard inter-device data transmission as 

separate tasks. 

For energy use coordination, the energy demand of 

each EU should be effectively accounted. EnergyCordy 

accounts the energy demand in task-level, instead of 

EU-level. This enables to estimate the energy use of a 

sensor more accurately when multiple concurrent EUs use 

the sensor in a shared manner. For example, when two 

concurrent EUs run a FFT task on the same sensor, the 

task-level accounting can effectively remove the overlap 

during the demand calculation. To reflect such potential 

concurrency in sensor use, the accounting is done at 

runtime.

For energy use accounting, EnergyCordy maintains a 

task-energy map, TEMapk, for each device, dk. Each map 

contains the average energy consumption rate for every 

task runnable on the device. We currently utilize an 

offline profiling method to build a task-energy map. The 

demand estimation through offline profiling works well in 

our environment where each task usually performs 

periodic operations at a fixed-time interval. Accordingly, 

the energy consumption for such tasks is unlikely to 

fluctuate over time.

Based on the task-energy map, EnergyCordy estimates 

the energy demands on each sensor to execute a set of 

EUs; the estimation is done by summing the energy 

demand of each task involved in the EUs as well as the 

base energy demand of the sensor. Given a set of EUs, P, 

the energy demand ed on a sensor dk is estimated as 

follows.

We assume that each task’s energy demand and their 

total demand have a linear relationship. The method 

works well with the the sensor prototypes and tasks we 

used. To achieve better accuracy, it is also possible to 

pre-profile the energy demand of all comibnations of task 

sets.

3.4 Energy Monitoring

To monitor the energy availability of sensor devices, 

the current prototype implementation uses the 

voltage-based method [18]. This method estimates the 

remaining energy based on voltage values. It is easy to 

implement since many widely used sensor devices are 

equipped with a voltage sensor giving real-time voltage 

readings. We build maps that translate voltage values to 

remaining energy, with which sensor voltage readings are 

converted to estimated remaining energy at runtime. 

While this method works reasonably well in our 

environment, the estimation accuracy can be further 

improved with hardware support. Elaborating on the 

remaining energy estimation method and improving the 

accuracy is beyond the scope of this paper, which is our 

future work.
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IV. Energy Use Coordination

4.1 Coordination Policy

The energy scheduler determines the best schedule to 

apply the alternative EUs for each application. The key 

challenge is that complex inter-dependency on the use of 

diverse EUs for different applications. Multiple EUs might 

have overlap on the sensor use among each other; it is 

also true even on the EUs for a single application. 

Accordingly, the execution of an EU for an application not 

only affects the lifetime of the applications sharing the 

sensors, but its effect is propagated to all applications on 

the network. Also, due to the irreversible characteristics 

of energy resource, a naïve EU selection at a moment 

would continuously affect all other applications sharing 

the same sensors, leaving no way to redeem the energy 

loss by the mistrial. To address such issues, the energy 

scheduler carefully analyzes the spatio-temporal 

inter-dependency in sensor energy use among alternative 

EUs, and generates a schedule over the whole time. As a 

result, the schedule is built in the form of an energy use 

schedule (EUSched), which represents timelines 

associated with sequences of EUs to apply for all 

applications. 

l EUSched = {EUSeqi | EUSeqi is a sequence of 

(EUi,m, ti,m)  pairs over a timeline representing the 

execution sequence of EUi,m and their duration, ti,m for 

an application appi} 

Through proper EUS generation, EnergyCordy 

coordinates the energy use of multiple competing 

applications, and prevents early shutdown of applications 

and sensors. 

EnergyCordy can flexibly incorporate diverse 

coordination policies and algorithms to generate a 

EUSched based on the EU abstraction. In the rest of this 

section, we introduce three useful policies and related 

EUSched generation algorithms to achieve the goals 

defined for the policies. 

4.2 Maximizing the Minimum Application Lifetime

Mobile sensing applications should run continuously to 

monitor a user’s contexts and provide situation-aware 

services. Accordingly, a user will want to maximize the 

applications’ lifetime if the next recharging time is 

unknown. For a policy to meet such a need of user, the 

primary goal of EnergyCordy can be set to maximize the 

minimum lifetime of any registered applications. In this 

case, we assume that all applications have the same 

priority; we address the situation that there are different 

priorities later in this section. 

To satisfy the goal, we devise a linear programming 

(LP)-based method. Given a set of applications, AppSet, 

and a set of sensors, SSet, the method determines the 

optimal EUSched that best meets the goal under the 

energy constraints of the sensors. To find the optimal 

schedule, it is necessary to determine the order and 

duration to apply EUs for all applications. However, 

dealing with both duration and order as variables 

complicates the constraint checking for linear 

programming due to tasks sharing among concurrent EUs 

and the following energy accounting. Thus, we introduce 

the concept of co-execution plan Px that represents a set 

of EUs concurrently executed for all applications at a 

moment. Px not only simplifies the constraint evaluation 

but also changes the non-linear balancing objective to 

linear one, facilitating the problem formulation as below. 

Px can be specified as follows. 

Px ⊂ { EUi,j  | there must exist an EUi,j for all 1≤i≤

N, 

and a ≠c for any two EUa,b and EUc,d },   for 1 ≤ x ≤ 

MN,  where M is the maximum number of EUs and N is 

the total number of registered applications. 

The energy demand to execute Px is defined as a 

vector Ex = (ex,1, …, ex,k, …, ex,L) where ex,k 

represents the energy consumption rate of a sensor, sk, 

to execute Px. Now, the balancing problem can be 

formulated as follows:

, where tx is the time duration to apply Px.

As noted, the non-linear optimization goal (to maximize 

the minimum lifetime of applications) is transformed into 

the linear goal (to maximize the lifetime to run a set of 

Px). Since a Px contains an EU for every application, 

maximizing the total durations to apply Px, i.e., , 

guarantees to maximize the minimum lifetime. This allows 

applying conventional solutions for linear programming. 

The LP-based method can be practically applied only 

with a small number of applications and their EUs, e.g., 

about under 10, since the time complexity is exponential. 

Note that the problem itself is NP-hard and can be 

reduced from another NP-hard problem, 3-dimensional 
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matching problem. 

To deal with a case that a user uses a large number of 

sensors and applications, we also develop a heuristic 

solution. The key idea is to arrange EUs for each 

application with an altruistic principle; it forces an 

application having diverse EU options with relatively rich 

energy availability to yield resources with high 

competition to other applications having few EU options 

with scarce energy resources. Each application is allowed 

to use resources with high competition only after it 

exhausts resources with low competition. This makes 

applications with fewer options to preferentially occupy 

the energy resources with high competition. Thus, the 

lifetime gap among the queries can be significantly 

narrowed.  

V. Experiments and Evaluation

5.1 Prototype Development

We have implemented the smartphone-side 

architecture of EnergyCordy on Android SDK 2.3 and 

deployed it on Google Nexus One. The total LoC are 

about 9,500. We connect one base sensor device to the 

smartphone via Bluetooth to support ZigBee 

communication between the smartphone and sensor 

devices. To support various sensing applications and their 

energy use options, EnergyCordy incorporates 42 types 

of tasks commonly used for feature extraction and 

context recognition.

The sensor-side architecture is implemented in NesC 

on top of TinyOS 1.1.11 and is deployed on four types of 

personal sensor devices presented in Section 2.1. The 

LoC are about 2,500. The implementation is based on 

event-driven concurrency model of TinyOS. To support 

diverse mobile sensing applications as a general-purpose 

sensing platform, we implemented the functionality that 

allows dynamic allocation and deallocation of tasks. Each 

sensor task is implemented as a TinyOS event handler, 

including sensing, feature extraction, and status reporting. 

To dynamically execute the assigned tasks, we 

implemented a job scheduler that executes the assigned 

tasks in given order and frequency. The current 

implementation includes a set of frequency-domain 

feature extraction tasks, e.g., FFT, and time-domain 

statistical feature extraction tasks, e.g., norm and RMS. 

Note that a sensing module is powered on only when the 

corresponding sensing task is allocated for energy saving. 

To save highly limited sensor memory space, we 

implemented a shared sensing data buffer for multiple 

feature extraction tasks using the same sensing source. 

The prototype consumes about 26.2 Kbytes of program 

memory and 1.1 Kbytes of RAM. 

Fig. 5. Energy profiling.

5.2 Energy Use Estimation

Energy demand profiling: We first build the 

task-energy map for prototype sensors through offline 

profiling. To facilitate the profiling for diverse tasks, 

EnergyCordy provides an energy profiling tool. It 

semi-automatically measures energy consumption per unit 

time using an Agilent 34410A digital multimeter. A part of 

the results are summarized in Fig. 5. Fig. 5 (a) and (b) 

show the average energy consumption of common tasks 

on all sensors and sensor-specific tasks, respectively. We 

noticed slight differences in energy demand even between 

the same types of sensor devices. To compensate the 

error, we adjusted the energy demand profile for each 

device. Fig. 5 (c) shows the base energy consumption of 

each device, i.e., the energy consumed when it performs 

only primitive EnergyCordy operations; transmission of 

heartbeat and voltage messages for notifying the 

smartphone of its presence and energy status. Fig. 5 (d) 

shows the average energy consumption of transmission 
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tasks as the number of transmitted packets increases. We 

observe that the energy consumption almost linearly 

increases with the number of packets. 

Energy availability monitoring: Fig. 6 shows voltage to 

remaining energy graphs we obtained from experiments. 

The experiments were conducted based on two different 

sensor devices with a rechargeable 250mAh Li-polymer 

battery. To evaluate the applicability of our method, we 

conduct experiments with a range of setting, i.e., different 

sensor devices running different tasks; (1) (d1, base), (2) 

(d1, ECG), (3) (d2, base). The graphs show the similar 

pattern overall although there is a little variation between 

them. Interestingly, voltage values do not decrease 

linearly. They slowly decrease when the amount of 

remaining energy is relatively large. When the remaining 

energy is smaller than 300J, the values sharply decrease. 

EU execution time estimation: Table 2 shows the 

estimated lifetime and measured one for five different 

cases. We intentionally used the batteries with different 

initial energy to test the accuracy of our estimation in 

diverse potential system conditions. We measured the real 

lifetime of a device by executing given task set on the 

device until it exhausts its energy. Compared with the 

measured one, the estimated execution time is fairly 

accurate with an error of smaller than 8.2% on average. 

This shows that our estimation method reasonably works 

well. We observed that the estimation error tends to 

slightly increase when the amount of remaining energy is 

relatively large. This is because the error of remaining 

energy estimation is likely to increase with relatively 

large voltage value as discussed before.

Table 2. EU execution time estimation

We evaluate the estimation accuracy of EU execution 

time based on estimated energy demand and remaining 

energy. The execution time of an EU is determined by 

the minimum lifetime of the associated sensor devices. 

The lifetime of a device is estimated as its expected 

remaining energy divided by the energy demand of the 

EU on the device. 

Fig. 6. Voltage-to-remaining energy map 

5.3 Evaluation of the EnergyCordy Coordination

5.3.1 Experimental Setup

Energy use options: based on the prototype system and 

devices, we have developed the energy use options of the 

four example applications. Table 3 shows the EUs and 

their associated devices, task sets, and utility level; we 

represent the utility of an EU in three levels according to 

the recognition accuracy: high, medium, and low. 

Physical activity monitor: we developed three 

alternative EUs using different combinations of 

accelerometer sensors for activity monitoring.

Fall detector: many methods have been proposed by 

using on-body accelerometers and gyroscopes to detect 

the occurrence of a fall. We implemented multiple EUs 

based on several of these methods using different sensor 

placement, sensor set, and accuracy. 

Table 3. Alternative EUs of example applications
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Fig. 7. Lifetime of applications

Fig. 8. Lifetime with different utility requirement

Heartbeat monitor: there are two major methods of 

heartbeat monitoring: one using ECG sensor on a chest 

and another using SpO2 sensor on a finger. The former 

usually provides better accuracy, but more expensive and 

less com-fortable than the latter. We developed two EUs 

using ECG sensor on d1 and SpO2 sensor on d3. 

Environment monitor: the initial implementation of the 

application monitors current weather status such as 

temperature, pressure, and illumination. This application 

has only a single EU.

Alternative systems: for comparison, we implemented 

three alternative energy coordination systems as 

following:

NonAdaptive: it is a basic mobile sensing system that 

utilizes a single, fixed processing logic for each 

application that provides the best recognition accuracy or 

the most energy efficiency.

UseRate: it adopts the concept of the budget 

distribution from [19]. It distributes the energy budget of 

each sensor to applications, proportionally to the number 

of the applications of which EUs use the sensor. For 

example, the activity monitor acquires one half of the 

available energy of d1(on thigh), since only two 

applications use the sensor.

Separate: it represents an application-driven energy 

coordination system. Each application directly arranges its 

EUs to achieve the coordination goal, independently of 

other applications. 

EnergyCordy setting: for all experiments, we set the 

initial energy of sensor devices to 3,330J; this value 

represents the fully-charged energy of 250mAh battery. 

However, it is very difficult to precisely adjust the 

remaining energy of the real battery. To overcome this, 

we obtain the remaining energy of sensor devices by 

subtracting the consuming energy from the initial value, 

instead of the estimation from the battery voltage. By 

default, we set the accuracy requirement of the 

applications to the medium level; EnergyCordy does not 

exploit EUs that have the low level.  

5.3.2 Maximizing the Minimum Application Lifetime

We evaluate the performance of EnergyCordy with the 

policy that maximize the minimum of application lifetimes. 

Fig. 7 presents the lifetime of the applications on 

different systems. On this policy, the alternative systems 

arrange EUs to maximize the lifetime of each application, 

i.e., an energy efficient EU in prior to a less efficient EU. 

The result shows that EnergyCordy achieves more 

balanced lifetime than other systems. On EnergyCordy, 

the minimum lifetime is 554 minutes of heartbeat monitor, 

whereas NonAdaptive, UseRate and Separate provide 302, 

197, and 404 minutes of the minimum lifetime, 

respectively. NonAdaptive shows most skewed lifetimes 

because each application has only a single EU and thus 

the achieved lifetime is proportional to the energy 

demand of the EU. Interestingly, UseRate shows much 

shorter lifetimes than other systems. This is because it 

cannot fully exploit the available energy of the sensors; it 

executes EUs only within the allocated budget to the 

applications even if the devices have remaining energy. 

We also evaluate the coordination effect of EnergyCordy 

with different utility requirements; High, Medium, and 

Low. Fig. 8 depicts the results. Regardless of the utility 

level, the lifetimes of the applications are well balanced 

on EnergyCordy. The minimum lifetime for High, Medium, 

and Low is 473, 554, and 592 minutes, respectively. As 

the requirement lowers, the achieved lifetime of 

applications increases. This is because lower requirement 

allows EnergyCordy to utilize more EUs and thus 

provides more opportunities in coordinating the 

applications’ energy use.
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VI. Conclusions

In this paper, we propose EnergyCordy, a novel 

inter-device energy use coordination system; with a 

system-wide holistic view, it coordinates energy use over 

multiple sensor devices by concurrent sensing 

applications. As a key approach, we propose a relaxed 

sensor association. It decouples the energy use of an 

application from specific sensor devices, allowing flexible 

contention resolution at runtime. More specifically, it 

prepares multiple energy use options (EU) that use 

different sensor combinations, and schedules the order 

and duration to apply EUs for coordinated energy use. We 

demonstrated the effectiveness of EnergyCordy by 

developing multiple example applications over diverse 

custom-designed senor devices. 

The result shows that EnergyCordy achieves much 

more balanced lifetime than other systems such as 

NonAdaptive which shows most skewed lifetimes because 

each application has only a single EU and thus the 

achieved lifetime is proportional to the energy demand of 

the EU. Regardless of the utility level, the lifetimes of the 

applications are also well balanced on EnergyCordy. We 

conclude that EnergyCordy effectively coordinates energy 

use of concurrent applications over multiple sensor 

devices and prevent undesired early shutdown of an 

application. 
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