DOI QR코드

DOI QR Code

Low-Temperature Deposition of Ga-Doped ZnO Films for Transparent Electrodes by Pulsed DC Magnetron Sputtering

  • Cheon, Dongkeun (School of Materials Science and Engineering, Changwon National University) ;
  • Ahn, Kyung-Jun (SNTEK Co. Ltd.) ;
  • Lee, Woong (School of Materials Science and Engineering, Changwon National University)
  • Received : 2016.09.29
  • Accepted : 2016.12.06
  • Published : 2017.02.27

Abstract

To establish low-temperature process conditions, process-property correlation has been investigated for Ga-doped ZnO (GZO) thin films deposited by pulsed DC magnetron sputtering. Thickness of GZO films and deposition temperature were varied from 50 to 500 nm and from room temperature to $250^{\circ}C$, respectively. Electrical properties of the GZO films initially improved with increase of temperature to $150^{\circ}C$, but deteriorated subsequently with further increase of the temperature. At lower temperatures, the electrical properties improved with increasing thickness; however, at higher temperatures, increasing thickness resulted in deteriorated electrical properties. Such changes in electrical properties were correlated to the microstructural evolution, which is dependent on the deposition temperature and the film thickness. While the GZO films had c-axis preferred orientation due to preferred nucleation, structural disordering with increasing deposition temperature and film thickness promoted grain growth with a-axis orientation. Consequently, it was possible to obtain a good electrical property at relatively low deposition temperature with small thickness.

Keywords

References

  1. K. Ellmer, ZnO and Its Applications, Transparent Conductive Zinc Oxide, pp. 1-34, ed. K. Ellmer, A. Klein, and B. Rech, Springer, Berlin (2008).
  2. B. G. Lewis and D. C. Paine, MRS Bullet., 25, 22 (2000).
  3. P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan and R. M. Perks, Dalton Trans., 2004, 2995 (2004).
  4. A. Kumar and C. Zhou, ACS Nano, 4, 11 (2010). https://doi.org/10.1021/nn901903b
  5. Z. Chen, B. Cotterell, W. Wang, E. Guenther and S. A. Chua, Thin Solid Films, 394, 201 (2001). https://doi.org/10.1016/S0040-6090(01)01138-5
  6. S. Major, S. Kumar, M. Bhatnagar and K. L. Chopra, Appl. Phys. Lett., 49, 394 (1986). https://doi.org/10.1063/1.97598
  7. E. Fortunato, D. Ginley, H. Hosono and D. C. Paine, MRS Bullet., 32, 242 (2007). https://doi.org/10.1557/mrs2007.29
  8. K. Ellmer, J. Phys. D: Appl. Phys., 33, R17 (2000). https://doi.org/10.1088/0022-3727/33/4/201
  9. U. Ozgur, D. Hofstetter and C. Morkoc, Proc. IEEE, 98, 1255 (2010). https://doi.org/10.1109/JPROC.2010.2044550
  10. J. Vl ek, A. D. Pajdarova and J. Musil, Contrib. Plasma Phys., 44, 426 (2004). https://doi.org/10.1002/ctpp.200410083
  11. J. Musil, P. Baroch, J. Vl ek, K. H. Nam and J. G. Han, Thin Solid Films, 475, 208 (2005). https://doi.org/10.1016/j.tsf.2004.07.041
  12. K. Suzuki, Thin Solid Films, 351, 8 (1999). https://doi.org/10.1016/S0040-6090(99)00148-0
  13. P. J. Kelly and R. D. Arnell, Vacuum, 56, 159 (2000). https://doi.org/10.1016/S0042-207X(99)00189-X
  14. J. O'Brien and P. J. Kelly, Surf. Coat. Technol., 142-144, 621 (2011).
  15. E. Nam, Y. H. Kang, D. Jung and Y. S. Kim, Thin Solid Films, 518, 6245 (2010). https://doi.org/10.1016/j.tsf.2010.02.068
  16. S. Lee, D. Cheon, W.-J. Kim, K.-J. Ahn and w. Lee, Semicond. Sci. Technol., 26, 115007 (2011). https://doi.org/10.1088/0268-1242/26/11/115007
  17. S. Lee, D. Cheon, W.-J. Kim, M.-H. Ham and W. Lee, Appl. Surf. Sci., 258, 6537.
  18. Y. Kajikawa, J. Cryst. Growth, 289, 387 (2006). https://doi.org/10.1016/j.jcrysgro.2005.11.089
  19. Y. E. Lee, J. B. Lee, Y. J. Kim, H. K. Yang, J. C. Park and H. J. Kim, J. Vac. Sci. Technol. A, 14, 1943 (1996). https://doi.org/10.1116/1.580365