DOI QR코드

DOI QR Code

Characterization of n-type In3Sb1Te2 and p-type Ge2Sb2Te5 Thin Films for Thermoelectric Generators

박막 열전 발전 소자를 위한 In3Sb1Te2와 Ge2Sb2Te5 박막의 열전 특성에 관한 연구

  • Kang, So-Hyeon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Seo, Hye-Ji (Department of Materials Science and Engineering, Chungnam National University) ;
  • Yoon, Soon-Gil (Department of Materials Science and Engineering, Chungnam National University)
  • 강소현 (충남대학교 신소재공학과) ;
  • 서혜지 (충남대학교 신소재공학과) ;
  • 윤순길 (충남대학교 신소재공학과)
  • Received : 2016.10.07
  • Accepted : 2016.12.12
  • Published : 2017.02.27

Abstract

A thin film thermoelectric generator that consisted of 5 p/n pairs was fabricated with $1{\mu}m$-thick n-type $In_3Sb_1Te_2$ and p-type $Ge_2Sb_2Te_5$ deposited via radio frequency magnetron sputtering. First, $1{\mu}m$-thick GST and IST thin films were deposited at $250^{\circ}C$ and room temperature, respectively, via radio-frequency sputtering; these films were annealed from 250 to $450^{\circ}C$ via rapid thermal annealing. The optimal power factor was found at an annealing temperature of $400^{\circ}C$ for 10 min. To demonstrate thermoelectric generation, we measured the output voltage and estimated the maximum power of the n-IST/p-GST generator by imposing a temperature difference between the hot and cold junctions. The maximum output voltage and the estimated maximum power of the $1{\mu}m$-thick n-IST/p-GST TE generators are approximately 17.1 mV and 5.1 nW at ${\Delta}T=12K$, respectively.

Keywords

References

  1. E. T. Kim, J. Y. Lee and Y. T. Kim, Phys. Status Solidi RRL, 3, 103 (2009). https://doi.org/10.1002/pssr.200903049
  2. Y. M. Lee, J. Baik, H.-J. Shin, Y. S. Kim, S. G. Yoon and Y. B. Qi, Appl. Surf. Sci., 292, 986 (2014). https://doi.org/10.1016/j.apsusc.2013.12.096
  3. R. Fallica, C. Wiemer, T. Stoycheva, E. Cianci M. Longo, H. T. Nguyen, A. Kusicak and J.-L. Battaglia, Microelectronic Eng, 120, 3 (2014). https://doi.org/10.1016/j.mee.2013.10.021
  4. M. Takashiri, T. Shirakawa, K. Miyazaki and H. Tsukamoto, Sens. Actuators A, 138, 329 (2007). https://doi.org/10.1016/j.sna.2007.05.030
  5. N. W. Park, T. H. Park, J. Y. Ahn, S. H. Kang, W. Y. Lee, S. G. Yoon and S. K. Lee, AIP Adv., 6, 065123 (2016). https://doi.org/10.1063/1.4955000
  6. J. H. Kim, J. Y. Choi, J. M. Bae, M. Y. Kim and T. S. Oh, Mater. Trans., 54, 618 (2013). https://doi.org/10.2320/matertrans.M2013010
  7. M. Y. Kim and T. S. Oh, J. Electro. Mater., 43, 1933 (2013).
  8. J. E. Hong and S. G. Yoon, ECS J. Solid State Sci. Technol., 3, 298(2014). https://doi.org/10.1149/2.0031410jss
  9. X. K. Duan and Y. Z. Jiang, Appl. Surf. Sci., 256, 7365 (2010). https://doi.org/10.1016/j.apsusc.2010.05.069
  10. M. J. Shin, D. J. Choi, M. J. Kang and S. Y. Choi, J. Korean Phys. Soc., 44, 10 (2004).
  11. Z. Zhang, J. Pan, L. W. W. Fang, Y. C. Yeo, Y. L. Foo, R. Zhao, L. Shi and E. S. Tok, Appl. Surf. Sci., 258, 6075 (2012). https://doi.org/10.1016/j.apsusc.2012.03.005
  12. Y. Choi, M. Jung and Y. K. Lee, Electrochem. Solid St. 12, F17 (2009). https://doi.org/10.1149/1.3129137
  13. S. D. Kwon, B. K. Ju, S. J. Yoon and J. S. Kim, J. Electron. Mater., 38, 920 (2009). https://doi.org/10.1007/s11664-009-0704-8