DOI QR코드

DOI QR Code

A Numerical Study on Heat Transfer and Flow Characteristics of a Finned Downhole Coaxial Heat Exchanger

외부유로 내벽에 설치된 핀 형상에 따른 이중관 열교환기의 열전달 및 유동에 대한 수치해석적 연구

  • Received : 2016.04.06
  • Accepted : 2016.12.07
  • Published : 2017.02.01

Abstract

In this study, the flow and heat transfer characteristics of the finned annular passage were investigated numerically. The annular passage simulates co-axial geothermal heat exchanger, and fins are installed on its inner wall to reduce heat loss from the production passage (annulus) to injection passage (inner pipe). A commercial CFD program, Ansys Fluent, was used with SST $k-{\omega}$ turbulence model. The effects of the geometric parameters of the fin on the inner tube were analyzed under the periodic boundary condition. The result indicated that most parameters had a tendency to increase with an increase in the height and angle of the fin. However, it was confirmed that the Nusselt number of the inner tube on the coaxial 15, 5, 0.3 was lower than that of the smooth tube. Additionally, the Nusselt number of the inner tube exhibited a tendency of decreasing with a decrease in the spacing in Coaxial 15, $S_f$, 0.3.

본 연구에서는 이중관 지중열교환기의 내부에 삽입되는 유로의 외벽에 설치된 핀 형상에 따른 유동 및 열전달 특성의 변화를 수치해석적으로 분석하였다. 해석에는 상용 CFD 소프트웨어인 Ansys Fluent를 이용하였으며, SST $k-{\omega}$ 난류 모델을 적용하였다. 지중열교환기의 성능을 높일 수 있는 핀의 형상을 찾기 위하여 핀의 각도($15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$), 높이비(0.1, 0.3, 0.5), 그리고 핀 간의 간격비(1, 3, 5)를 변화시키며 해석을 수행하였다. 그 결과 핀의 각도와 높이가 증가하면서 대부분의 핀 형상에서 외각유로의 외벽과 내벽에서 Nusselt 수가 증가하는 경향이 나타났다. 하지만 핀 각도 $15^{\circ}$, 높이 비 0.3 이하의 형상에서 핀이 설치되지 않은 경우보다 외벽의 열전달계수는 증가하며 내벽의 열전달 계수가 감소하는 결과를 관찰하였다. 또한 핀 간의 간격이 감소할 경우 외벽의 열전달계수는 큰 변화가 없으나 내벽의 열전달계수는 감소하는 경향이 나타났다.

Keywords

References

  1. Hurter, S. and Schellschmidt, R., 2003, "Atlas of Geothermal Resources in Europe," Geothermics, Vol. 32, Issues 4-6, pp. 779-787. https://doi.org/10.1016/S0375-6505(03)00070-1
  2. Morita, K., Matsubayashi, O. and Kusunoki, K., 1985, "Down-Hole Coaxial Heat Exchanger Using Insulated Inner Pipe for Maximum Heat Extraction," Geothermal Resources Council Trans, Vol. 9, PART 1, pp. 45-50.
  3. Cho, H. G., Youn, B. and Kim, J. H., 2012, "Analysis of Concentric Heat Exchanger Performance for the Fin Shape on the Inner Tube," Proc. of the SAREK 2012 Summer Annual Meeting, pp. 14-17.
  4. Shin, Y. H., Jeong, H. D., Lee, H. H., Chung, H. S. and Jeong, H. M., 2011, "A Numerical Study of Heat Transfer and Flow Characteristics in Shell and Tube Heat Exchanger," Proc. of the SAREK 2011 Summer Annual Meeting, pp. 1070-1073.
  5. Lee, K. J., Kwon, O. K., Kim, Y. C. and Seol, W. S., 2012, "An Experimental Study on the Evaporation Heat Transfer Characteristics of Double Pipe Heat Exchanger," Proc. of the KSME 2012 Fall Annual Meeting, pp. 828-832.
  6. Park, S. H., Kim, S. K. and Ha, M. Y., 2013, "Numerical Study on Flow and Heat Transfer Characteristics of Pipes with Various Shapes," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 11, pp. 999-1007. https://doi.org/10.3795/KSME-B.2013.37.11.999
  7. Yuan, Z. X., Zhao, L. H. and Zhang, B. D., 2007, "Fin Angle Effect on Turbulent Heat Transfer in Parallel-plate Channel with Flow-inclining Fins," International Journal of Numerical Methods for Heat&Fluid Flow, Vol. 17, No. 1, pp. 5-19. https://doi.org/10.1108/09615530710716054
  8. Ahn, S. W., 2003, "Experimental Studies on Heat Transfer in the Annuli with Corrugated Inner Tubes," Jounal of Mechanical Science and Technology, Vol. 17, No. 8, pp. 1226-1233.
  9. Hatami, M., Jafaryar, M., Ganji, D. D. and Gorji-Bandpy, M., 2014, "Optimization of Finned- Tube Heat Exchangers for Diesel Exhaust Waste Heat Recovery Using CFD and CCD Techniques," International Communications in Heat and Mass Transfer, Vol. 57, pp. 254-263. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.015
  10. Incropera, F. P. and DeWitt, D. P., 2001, "Fundamentals of Heat and Mass Transfer," 5th ed, John Wiley & Sons, New York.
  11. Meter, F. R., 1994, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, No. 8, pp. 269-289.
  12. Terekhow, V. I., Yarygina, N. I. and Zhdanov, R. F., 2003, "Heat Transfer in Turbulent Separated Flows in the Presence of High Free-Stream Turbulence," International Journal of Heat and Mass Transfer, Vol. 46, pp. 4535-4551. https://doi.org/10.1016/S0017-9310(03)00291-6