DOI QR코드

DOI QR Code

Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition

섬유 강화 지능형 연성 복합재 구동기의 재료구성에 따른 거동특성 평가

  • Han, Min-Woo (Dept. of Mechanical & Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Kim, Hyung-Il (Dept. of Mechanical & Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Song, Sung-Hyuk (Dept. of Mechanical & Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Ahn, Sung-Hoon (Dept. of Mechanical & Aerospace Engineering, Seoul Nat'l Univ.)
  • 한민우 (서울대학교 기계항공공학부) ;
  • 김형일 (서울대학교 기계항공공학부) ;
  • 송성혁 (서울대학교 기계항공공학부) ;
  • 안성훈 (서울대학교 기계항공공학부)
  • Received : 2016.01.14
  • Accepted : 2016.11.02
  • Published : 2017.02.01

Abstract

Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

섬유강화 고분자 복합재료는 섬유 형태의 강화제와 고분자 형태의 기지재료가 결합된 형태로 이는 무게 대비 고강도 및 고강성의 구조물 제작에 용이하다. 본 연구에서는 형상기억합금 와이어가 삽입된 섬유 강화 지능형 연성 복합재 구동기를 제작, 이의 재료 구성에 따른 거동 특성을 평가 하고자 한다. 구동기는 형상기억합금이 포함된 구동층과 일반 구조층으로 구성되어 한 층씩 적층되는 방식으로 제작되며 재료 구성에 따른 거동 특성을 살펴보기 위하여 일반 구조층으로 사용된 유리섬유 직물의 적층 수, 기지재료의 종류를 달리한 뒤 구동 특성을 살펴보았다. 또한, 구동 시에 요구되는 인가 전류의 양을 달리하여 최대 구동각과 최대 구동각에 도달하는 구동 시간을 측정하였다.

Keywords

References

  1. Mallick, P.K., 2007, Fiber-reinforced composites: materials, manufacturing, and design, CRC press.
  2. Rogers, C., Liang, C. and Jia, J., 1989, "Behavior of Shape Memory Alloy Reinforced Composite Plates Part 1: Model Formulation and Control Concepts," Proceedings of the 30th Structures, Structural Dynamics and Materials Conference.
  3. Kim, J.W. and Lee, D.G., 2014, "Study on the Fiber Orientation During Compression Molding of Reinforced Thermoplastic Composites," International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 1, No. 4, pp. 335-339. https://doi.org/10.1007/s40684-014-0042-z
  4. Gibson, R.F., 2010, "A Review of Recent Research on Mechanics of Multifunctional Composite Materials and Structures," Composite Structures, Vol. 92, No. 12, pp. 2793-2810. https://doi.org/10.1016/j.compstruct.2010.05.003
  5. Mallik, N. and Ray, M., 2003, "Effective Coefficients of Piezoelectric Fiber-reinforced Composites," AIAA journal, Vol. 41, No. 4, pp. 704-710. https://doi.org/10.2514/2.2001
  6. Bar-Cohen, Y., 2002, "Electroactive Polymers as Artificial Muscles: a Review," Journal of Spacecraft and Rockets, Vol. 39, No. 6, pp. 822-827. https://doi.org/10.2514/2.3902
  7. Meng, Q. and Hu, J., 2009, "A Review of Shape Memory Polymer Composites and Blends," Composites Part A: Applied Science and Manufacturing, Vol. 40, No. 11, pp. 1661-1672. https://doi.org/10.1016/j.compositesa.2009.08.011
  8. Liu, Y., Du, H., Liu, L. and Leng, J., 2014, "Shape Memory Polymers and Their Composites in Aerospace Applications: a Review," Smart Materials and Structures, Vol. 23, No. 2, 023001. https://doi.org/10.1088/0964-1726/23/2/023001
  9. Bettini, P., Riva, M., Sala, G., Di Landro L., Airoldi, A. and Cucco, J., 2009, "Carbon Fiber Reinforced Smart Laminates with Embedded SMA Actuators - Part I: Embedding Techniques and Interface Analysis," Journal of Materials Engineering and Performance, Vol. 18, No. 56, pp. 664-671. https://doi.org/10.1007/s11665-009-9384-z
  10. Chopra, I., 2002, "Review of State of Art of Smart Structures and Integrated Systems," AIAA Journal, Vol. 40, No. 11, pp. 2145-2187. https://doi.org/10.2514/2.1561
  11. Lagoudas, D.C. and Tadjbakhsh, I.G., 1992, "Active Flexible Rods with Embedded SMA Fibers," Smart Materials and Structures, Vol. 1, No. 2, p. 162. https://doi.org/10.1088/0964-1726/1/2/010
  12. Choi, S. and Lee, J.J., 1998, "The Shape Control of a Composite Beam with Embedded Shape Memory Alloy Wire Actuators," Smart Materials and Structures, Vol. 7, No. 6, p. 759. https://doi.org/10.1088/0964-1726/7/6/004
  13. Bergamini, A., Christen, R. and Motavalli, M., 2007, "Electrostatically Tunable Bending Stiffness in a GFRP-CFRP Composite Beam," Smart Materials and Structures, Vol. 16, No. 3, p. 575. https://doi.org/10.1088/0964-1726/16/3/004
  14. Baz, A., Chen, T. and Ro, J., 2000, "Shape Control of NITINOL-Reinforced Composite Beams," Composites Part B: Engineering, Vol. 31, No. 8, pp. 631- 642. https://doi.org/10.1016/S1359-8368(00)00034-2
  15. Choi, S., Lee, J.J., Seo, D.C. and Choi, S.W., 1999, "The Active Buckling Control of Laminated Composite Beams with Embedded Shape Memory Alloy Wires," Composite Structures, Vol. 47, No. 1, pp. 679- 686. https://doi.org/10.1016/S0263-8223(00)00053-2
  16. Zhang, R.X., Ni, Q.Q., Masuda, A., Yamamura, T. and Iwamoto, M., 2006, "Vibration Characteristics of Laminated Composite Plates with Embedded Shape Memory Alloys," Composite Structures, Vol. 74, No. 4, pp. 389-398. https://doi.org/10.1016/j.compstruct.2005.04.019
  17. Chu, W.S., Kim, M.S., Jang, K.H., Song, J.H., Rodrigue, H., Chun, D.M., Cho, Y.T., Ko, S.H., Cho, K.J., Cha, S.W., Min, S., Jeong, S.H., Jeong, H., Lee, C.M., Chu, C.N. and Ahn, S.H., 2016, "From Design for Manufacturing (DFM) to Manufacturing for Design (MFD) via Hybrid Manufacturing and Smart Factory: A Review and Perspective of Paradigm Shift," International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 3, No. 2, pp. 209-222. https://doi.org/10.1007/s40684-016-0028-0
  18. Han, M.W. and Ahn, S.H., 2017, "Blooming Knit Flowers: Loop-linked Soft Morphing Structures for Soft Robotics," Advanced Materials, Accepted.
  19. Wang, W., Li, C.Z., Rodrigue, H., Yuan, F.P., Han, M.W., Cho, M.H. and Ahn, S.H., 2017, "Kirigami/ Origami-based Soft Deployable Reflector for Optical Beam Steering," Advanced Functional Materials, Accepted.
  20. Wang, W., Kim, N.G., Rodrigue, H. and Ahn, S.H., 2017, "Modular Assembly of Soft Deployable Structures and Robots," Materials Horizons, Accepted.
  21. Ahn, S.H., Lee, K.T., Kim, H.J., Wu, R., Kim, J.S. and Song, S.H., 2012, "Smart Soft Composite: An Integrated 3D Soft Morphing Structure using Bendtwist Coupling of Anisotropic Materials," International Journal of Precision Engineering and Manufacturing, Vol. 13, No. 4, pp. 631-634. https://doi.org/10.1007/s12541-012-0081-8
  22. Han, M.W., Rodrigue, H., Cho, S., Song, S.H., Wang, W., Chu, W.S. and Ahn, S.H., 2016, "Woven Type Smart Soft Composite for Soft Morphing Car Spoiler," Composites Part B: Engineering, Vol. 86, No. 1, pp. 285-298. https://doi.org/10.1016/j.compositesb.2015.10.009
  23. Han, M.W., Rodrigue, H., Kim, H.I., Song, S.H. and Ahn, S.H., 2016, "Shape Memory Alloy/Glass Fiber Woven Composite for Soft Morphing Winglets of Unmanned Aerial Vehicles," Composite Structures, Vol. 140, No. 15, pp. 202-212. https://doi.org/10.1016/j.compstruct.2015.12.051