Verification of Build Part and Tool Paths for Metal 3-D Printing Process

3차원 금속 프린팅 공정에서의 조형파트 진단 및 조형공구경로 검증

  • Lee, Kyubok (Dept. of Mechanical Engineering, Hongik Univ.) ;
  • Jee, Haeseong (Dept. of Mechanical System Design Engineering, Hongik Univ.)
  • 이규복 (홍익대학교 기계공학과) ;
  • 지해성 (홍익대학교 기계, 시스템 디자인공학과)
  • Received : 2016.06.24
  • Accepted : 2016.10.24
  • Published : 2017.02.01


Metal 3D printing, which is an additive metal manufacturing (AMM) process, enables the development of full-density metallic tools and parts using metal powders that are precisely delivered and controlled for deposition with no powder bed. However, some unknown geometric defects and irregular geometric features on an STL model can possibly result in incorrect metal part fabrication after the build. This study first proposes a methodical approach for verifying the build part, including the missing facet problems in an STL model, by defining some irregular features that possibly exist on the part. Second, 2D tool paths on each build layer were investigated for detecting any singular region inside the layer. The method was implemented for building two sample STL models using a direct energy deposition process, and finally, it was visually simulated for diagnosis.

AMM(Additive Metal Manufacturing)이라 호칭되는 3차원 금속 프린팅(metal 3-D printing) 공정은 금속분말(metal powder)을 적층 재료로 사용하여 기계적부품용 실형상 금속 파트(metallic parts)를 직접 조형하여 제조한다. 한편, 조형 파트형상의 STL모델에 존재하는 기하학적 오류들과 특징형상들의 특이성으로 인하여 조형 작업 중에 내부에 결함들이 포함된 실형상 파트가 조형될 가능성이 존재하게 되며 이로 인해 3차원 금속 프린팅 조형공정 자체의 신뢰성에 문제를 야기할 수 있다. 본 논문에서는 이러한 조형작업 중 발생할 수 있는 결함들을 미리 진단, 분석하고 수정하기 위하여 첫째, 조형 전에 STL 형상모델의 진단분석을 통하여 결함요소를 사전에 탐지하고 둘째, 적층 단면내 조형 공구 경로상에 실제로 포함된 결함들을 분석하고 이를 수정하기 위한 조형 파트 진단 및 조형 공구 경로 검증 연구방법을 제시하였다. 또한 DED(direct energy deposition) 공정을 기준으로 2가지 STL 형상파트 사례들에 대하여 제시한 연구방법의 case study를 수행하였다.



Grant : 분산환경에서의 레이저 적층 직접금속조형의 e-manufacturing 기술 구현

Supported by : 홍익대학교


  1. Scott, J., Gupta, N., Weber, C., Newsome, S., Wohlers, T. and Caffrey, T., 2012, "Additive Manufacturing: Status and Opportunities," Science and Technology Policy Institute, pp. 1-5.
  2. Son, Y., Jang, J., Joo. B., Yim, H. and Moon, Y., 2009, "Characterization of Direct Laser Metal Forming Technology for the Restoration of Mold Surface," Trans. Korean Soc. of Mech. Eng. A, Vol. 33, No. 7, pp. 681-686.
  3. ASTM-F42.91 Subcommittee, 2015, "Standard Terminology for Additive Manufacturing Technologies," ASTM Designation: F2792-12a, Vol. 10.04.
  4. Samperi, M. T., 2014, "Development of Design Guidelines for Metal Additive Manufacturing and Process Selection," M.S. Dissertation, The Pennsylvania State Univ., U.S.A., pp. 1-37.
  5. Lee, K. and Jee, H., 2015, "Slicing Algorithms for Multi-axis 3-D Metal Printing of Overhangs," Journal of Mechanical Science and Technology, Vol. 29, No. 12, pp. 5139-5144.
  6. Jee, H. and Suh, J., 2013, "Software Supports and E-manufacturing for DMT Process," Journal of Mechanical Science and Technology, Vol. 27, No. 10, pp. 2947-2953.
  7. Xu, F., Wong, Y. S., Loh, H. T., Fuh, J. Y. H. and Miyazawa, T., 1997, "Optimal Orientation with Variable Slicing in Stereolithography," Rapid Prototyping Journal, Vol. 3, No. 3, pp. 76-88.
  8. Chae, H., 1999, "System Developement for STL Error Correction and Shape Modification," Journal of the Korean Society for Precision Engineering, Vol. 16, No. 3, pp. 53-61.
  9. Choi, H. and Lee, S., 1996, "A Study on Error Verification of STL Format for Rapid Prototyping System," Journal of the Korean Society for Precision Engineering, Vol. 13, No. 10, pp. 46-55.
  10. Son, Y., Park, J., Kim, S., Kim, J. and Jeon, E., 1998, "A Study on DB Construction for Error Modification of STL Format and Efficiency by Shape Restoration," Journal of the Korean Society for Precision Engineering, Vol. 15, No. 12, pp. 21-27.
  11. Suryakumar,S., Karunakaran, K.P., Bernard, A., Chandrasekhar, U., Raghavender, N. and Sharmab, D., 2011, "Weld Bead Modeling and Process Optimization in Hybrid Layered Manufacturing," Computer-Aided Design, Vol. 43, pp. 331-344.
  12. Jee, H. and Sachs, E., 2000, "A Visual Simulation Technique for 3D Printing," Advances in Engineering Software, Vol. 31, No. 2, pp. 97-106.