DOI QR코드

DOI QR Code

Damage Tolerance Assessment for Fatigue-Critical Locations of Wing Structure of Aged Aircraft

장기운영 항공기 주익 구조물 피로임계부위의 손상허용평가

  • Received : 2016.07.06
  • Accepted : 2016.10.24
  • Published : 2017.02.01

Abstract

This study aims to assess the damage tolerance of the wing structure of aged aircraft with long-term service through the fatigue crack growth analysis and tests. For the fatigue-critical locations (FCL) W2 and W4 in the wing structure, the fatigue stress spectrum was derived based on a previous study. Thereafter, a crack propagation analysis for the FCLs was conducted using the commercial software $NASGRO^{TM}$. The algorithm for the fatigue stress spectrum was verified. Fatigue crack growth tests were then performed for two types of specimens: Type #1 was extracted from the wing structure of aged aircraft, and Type #2 was made of the same material as the wing structure. By comparing the experimental results of these specimens, we assessed the damage tolerance of the wing structure of aged aircraft with service time.

본 연구의 목적은 항공기 주익 구조물에 대한 피로균열진전 해석 및 실험을 통하여 운영 기간에 따른 장기 운영 항공기의 손상허용성을 평가하는 하는 것이다. 이를 위하여 주익 구조물의 피로임계부위 2 곳을 대상으로, 선행 연구에서 개발된 알고리즘을 기반으로 산출된 피로응력 스펙트럼 및 상용 코드인 NASGRO 를 이용한 피로균열진전해석을 수행하고 그 결과를 참고문헌의 결과와 비교하여 피로응력 스펙트럼 및 균열진전해석방법의 타당성을 확인하였다. 또한 실제 주익 구조물에서 채취한 시험편 및 이와 동일 재료로 가공된 시험편을 대상으로 위의 피로응력 스펙트럼을 적용한 피로균열진전시험을 실시하고 그 결과를 이용하여 운영 기간에 따른 주익 구조물의 손상허용성을 평가하였다.

Keywords

References

  1. Kim, Y. J., Kim, H. G., Kim, C. Y., Chang, J. J. and Lee, M. Y., 2013, " Fatigue Analysis to Determine the Repair Limit for the Damaged Fastener Hole of Aging Aircraft(P-3CK)," Proceeding of JKSAS, pp. 959-966.
  2. Kang, K. W., Koh, S. K., Choi, D. S. and Kim, T. S., 2010, "Fatigue Life and Stress Spectrum of Wing Structure of Aircraft," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 9, pp. 1185-1191. https://doi.org/10.3795/KSME-A.2010.34.9.1185
  3. Kim, W. D., 2007, "Fatigue Life Prediction of Composite Patch for Edge Cracked Aluminum Plate," Trans. of the KSAS, Vol. 35, No. 1, pp. 51-57.
  4. Lee, D. H., Kwon, A. J., You, W. H., Choi, J. B. and Kim, Y. J., 2009, "Evaluation of Fatigue Crack Initiation Life in a Press-Fitted Shaft Considering the Fretting Wear," Trans. Korean Soc. Mech. Eng. A, Vol. 33, No. 10, pp. 1091-1098. https://doi.org/10.3795/KSME-A.2009.33.10.1091
  5. Hur, J. W., 2010, "Study on Fatigue Life Estimation for Aircraft Engine Support Structure," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No.11, pp. 1667-1674. https://doi.org/10.3795/KSME-A.2010.34.11.1667
  6. Hu, D., Wang, R., Fan, J and Shen, X., 2012, "Probabilistic Damage Tolerance Analysis on Turbine Disk Through Experimental Data," Engineering Fracture Mechanics, Vol. 87, pp.73-82. https://doi.org/10.1016/j.engfracmech.2012.03.008
  7. Lee, H. C., Lee, B. W and Goo, B. U., 2011, "Extending Service Life of Military Aging Aircraft," Trans. of the KSAS, pp. 907-911.
  8. Baker, A., 1999, "Bonded Composite Repair of Fatigue-cracked Primary Aircraft Structure," Composite Structures, Vol. 47, pp. 431-443. https://doi.org/10.1016/S0263-8223(00)00011-8
  9. Ferreira V. Mattos, D., Mello Junior, Alberto, W.S., Ribeiro, F. N. and Jun, J., 2009, "F-5M DTA Program," Journal of Aerospace Technology and Management, Vol. 1, No. 1, pp. 113-120. https://doi.org/10.5028/jatm.2009.0101113120
  10. NASGRO, 2014, "Fracture Mechanics and Fatigue Crack Growth Analysis Software," Reference Manual, Version 7.1.
  11. Chun, Y.C., Jang, Y.J., Chung, T.J. and Kang, K.W., 2015, "Stress Spectrum Algorithm Development for Fatigue Crack Growth Analysis and Experiment for Aircraft Wing Structure," Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 12, pp. 1281-1286. https://doi.org/10.3795/KSME-A.2015.39.12.1281
  12. SwRI Report, 1996, "F-5 FMS Durability and Damage Tolerance Update Revised Final DADTA Report - F-5E/F Republic of Korea Air Force," SwRI 06-4222.
  13. Shim, D. J., Rudland, D. and Harris, D., 2011, "Modeling of Subcritical Crack Growth due to Stress Corrosion Cracking: Transition from Surface Crack to Through-wall Crack," PVP2011-57267, ASME Pressure Vessels and Piping Conference, Baltimore, Maryland, USA.
  14. ASTM E466-15, 2015, "Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials," ASTM International.
  15. ABAQUS Version 6.14, Dassault Systems Simulia, Inc.
  16. ASTM E8M-15a, 2015, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International.
  17. Chun, Y. C., Jang, Y. J., Chung, T. J. and Kang, K. W., 2015, "Stress Spectrum Algorithm Development for Fatigue Crack Growth Analysis and Experiment of Aircraft Wing Structure," KSME 15MF FR02A02, pp. 81-92.
  18. Willenborg, J., Engle, R.M. and Wood, H.A., 1971, "A Crack Growth Retardation Model Using an Effective Stress Concept," AFFDL-TM-71-1- FBR.
  19. Kim, J.K. and Shim, D.S., 2000, "Variation in Fatigue Crack Growth due to the Thickness Effect," International Journal of Fatigue, Vo. 22, No. 7, pp. 611-618. https://doi.org/10.1016/S0142-1123(00)00032-3