DOI QR코드

DOI QR Code

PRODUCTS OF DIFFERENTIATION AND COMPOSITION OPERATORS FROM THE BLOCH SPACE AND WEIGHTED DIRICHLET SPACES TO MORREY TYPE SPACES

  • Hu, Qinghua (Department of Mathematics Shantou University) ;
  • Li, Songxiao (Department of Mathematics Shantou University)
  • Received : 2016.03.28
  • Published : 2017.03.01

Abstract

In this paper, we characterize the boundedness, compactness and essential norm of products of differentiation and composition operators from the Bloch space and weighted Dirichlet spaces to analytic Morrey type spaces.

Acknowledgement

Supported by : NNSF of China

References

  1. R. Aulaskari, D. Stegenga, and J. Xiao, Some subclasses of BMOA and their characterizations in terms of Carleson measures, Rocky Mountain J. Math. 26 (1996), no. 2, 485-506. https://doi.org/10.1216/rmjm/1181072070
  2. C. Cowen and B. Maccluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.
  3. M. Essen, H. Wulan, and J. Xiao, Several function theoretic characterization of $Q_K$ spaces, J. Funct. Anal. 230 (2006), no. 1, 78-115. https://doi.org/10.1016/j.jfa.2005.07.004
  4. R. Hibschweiler and N. Portnoy, Composition followed by differentiation between Bergman and Hardy spaces, Rocky Mountain J. Math. 35 (2005), no. 3, 843-855. https://doi.org/10.1216/rmjm/1181069709
  5. H. Li and X. Fu, A new characterization of generalized weighted composition operators from the Bloch space into the Zygmund space, J. Funct. Spaces Appl. 2013 (2013), Article ID 925901, 12 pages.
  6. S. Li and S. Stevic, Composition followed by differentiation between $H^{\infty}$ and ${\alpha}$-Bloch spaces, Houston J. Math. 35 (2009), no. 1, 327-340.
  7. S. Li and S. Stevic, Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces, Appl. Math. Comput. 217 (2010), no. 7, 3144-3154. https://doi.org/10.1016/j.amc.2010.08.047
  8. S. Li and S. Stevic, Generalized weighted composition operators from ${\alpha}$-Bloch spaces into weightedtype spaces, J. Inequal. Appl. 2015 (2015), Article No. 265, 12 pages. https://doi.org/10.1186/s13660-014-0537-8
  9. M. Lindstrom, S. Makhmutov, and J. Taskinen, The essential norm of a Bloch-to-$Q_p$ composition operator, Canad. Math. Bull. 47 (2004), no. 1, 49-59. https://doi.org/10.4153/CMB-2004-007-6
  10. Z. Lou, Composition operators on Bloch type spaces, Analysis 23 (2003), no. 1, 81-95.
  11. D. Luecking, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math. 107 (1985), no. 1, 85-111. https://doi.org/10.2307/2374458
  12. J. Rattya, The essential norm of a composition operator mapping into the $Q_s$-space, J. Math. Anal. Appl. 333 (2007), no. 2, 787-797. https://doi.org/10.1016/j.jmaa.2006.11.010
  13. W. Smith and R. Zhao, Composition operators mapping into the $Q_p$ spaces, Analysis 17 (1997), no. 2-3, 239-263.
  14. S. Stevic, Weighted differentiation composition operators from the mixed-norm spaces to the nth weighted-type space on the unit disk, Abstr. Appl. Anal. 2010 (2010), Article ID 246287, 15 pages.
  15. S. Stevic, Weighted differentiation composition operators from $H^{\infty}$ and Bloch spaces to nth weigthed-type spaces on the unit disk, Appl. Math. Comput. 216 (2010), no. 12, 3634-3641. https://doi.org/10.1016/j.amc.2010.05.014
  16. M. Tjani, Compact composition operators on some Mobius invariant Banach space, Ph.D dissertation, Michigan State University, 1996.
  17. Y. Wu and H. Wulan, Products of differentiation and composition operators on the Bloch space, Collect. Math. 63 (2012), no. 1, 93-107. https://doi.org/10.1007/s13348-010-0030-8
  18. Z. Wu and C. Xie, Q space and Morrey spaces, J. Funct. Anal. 201 (2003), no. 1, 282-297. https://doi.org/10.1016/S0022-1236(03)00020-X
  19. H. Wulan, Compactness of the composition operators from the Bloch space B to $Q_K$ spaces, Acta Math. Sin. (Engl. Ser.) 21 (2005), 1415-1424. https://doi.org/10.1007/s10114-005-0584-7
  20. H. Wulan and J. Zhou, $Q_K$ and Morrey type spaces, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 1, 193-207. https://doi.org/10.5186/aasfm.2013.3801
  21. S. Yamashita, Gap series and ${\alpha}$-Bloch functions, Yokohama Math. J. 28 (1980), no. 1-2, 31-36.
  22. K. Zhu, Operator Theory in Function Spaces, American Mathematical Society, Providence, RI, 2007.
  23. X. Zhu, Generalized weighted composition operators from Bloch-type spaces to weighted Bergman spaces, Indian J. Math. 49 (2007), no. 2, 139-149.
  24. X. Zhu, Generalized weighted composition operators on Bloch-type spaces, J. Inequal. Appl. 2015 (2015), 59-68. https://doi.org/10.1186/s13660-015-0580-0
  25. X. Zhu, Essential norm of generalized weighted composition operators on Bloch-type spaces, Appl. Math. Comput. 274 (2016), 133-142.