CHARACTERIZATIONS OF CENTRALIZERS AND DERIVATIONS ON SOME ALGEBRAS

JUN HE, JIANKUI LI, AND WENHUA QIAN

Abstract. A linear mapping ϕ on an algebra A is called a centralizable mapping at $G \in A$ if $\phi(AB) = \phi(A)B = A\phi(B)$ for each A and B in A with $AB = G$, and ϕ is called a derivable mapping at $G \in A$ if $\phi(AB) = \phi(A)B + A\phi(B)$ for each A and B in A with $AB = G$. A point G in A is called a full-centralizable point (resp. full-derivable point) if every centralizable (resp. derivable) mapping at G is a centralizer (resp. derivation). We prove that every point in a von Neumann algebra or a triangular algebra is a full-centralizable point. We also prove that a point in a von Neumann algebra is a full-derivable point if and only if its central carrier is the unit.

1. Introduction

Let A be an associative algebra over the complex field \mathbb{C}, and ϕ be a linear mapping from A into itself. ϕ is called a centralizer if $\phi(AB) = \phi(A)B = A\phi(B)$ for each A and B in A. Obviously, if A is an algebra with unit I, then ϕ is a centralizer if and only if $\phi(A) = \phi(I)A = A\phi(I)$ for every A in A. ϕ is called a derivation if $\phi(AB) = \phi(A)B + A\phi(B)$ for each A and B in A.

A linear mapping $\phi : A \to A$ is called a centralizable mapping at $G \in A$ if $\phi(AB) = \phi(A)B = A\phi(B)$ for each A and B in A with $AB = G$, and ϕ is called a derivable mapping at $G \in A$ if $\phi(AB) = \phi(A)B + A\phi(B)$ for each A and B in A with $AB = G$. An element G in A is called a full-centralizable point (resp. full-derivable point) if every centralizable (resp. derivable) mapping at G is a centralizer (resp. derivation).

In [3], Brešar proves that if R is a prime ring with a nontrivial idempotent, then 0 is a full-centralizable point. In [18], X. Qi and J. Hou characterize centralizable and derivable mappings at 0 in triangular algebras. In [17], X. Qi proves that every nontrivial idempotent in a prime ring is a full-centralizable point. In [19], W. Xu, R. An and J. Hou prove that every element in $B(H)$ is...
a full-centralizable point, where \(\mathcal{H} \) is a Hilbert space. For more information on centralizable and derivable mappings, we refer to [2, 7, 11, 12, 14, 20].

For a von Neumann algebra \(\mathcal{A} \), the central carrier \(C(A) \) of an element \(A \) in \(\mathcal{A} \) is the projection \(I - P \), where \(P \) is the union of all central projections \(P_\alpha \) in \(\mathcal{A} \) such that \(P_\alpha A = 0 \).

This paper is organized as follows. In Section 2, by using the techniques about central carriers, we show that every element in a von Neumann algebra is a full-centralizable point.

Let \(A \) and \(B \) be two unital algebras over the complex field \(\mathbb{C} \), and \(M \) be a unital \((\mathcal{A}, \mathcal{B}) \)-bimodule which is faithful both as a left \(\mathcal{A} \)-module and a right \(\mathcal{B} \)-module. The algebra

\[
\text{Tri}(\mathcal{A}, M, \mathcal{B}) = \left\{ \begin{bmatrix} A & M \\ 0 & B \end{bmatrix} : A \in \mathcal{A}, B \in \mathcal{B}, M \in M \right\}
\]

under the usual matrix addition and matrix multiplication is called a triangular algebra.

In Section 3, we show that if \(A \) and \(B \) are two unital Banach algebras, then every element in \(\text{Tri}(\mathcal{A}, M, \mathcal{B}) \) is a full-centralizable point.

In Section 4, we show that for every point \(G \) in a von Neumann algebra \(\mathcal{A} \), if \(\Delta \) is a derivable mapping at \(G \), then \(\Delta = D + \phi \), where \(D : \mathcal{A} \to \mathcal{A} \) is a derivation and \(\phi : \mathcal{A} \to \mathcal{A} \) is a centralizer. Moreover, we prove that \(G \) is a full-derivable point if and only if \(C(G) = I \).

2. Centralizers on von Neumann algebras

In this section, \(\mathcal{A} \) denotes a unital algebra and \(\phi : \mathcal{A} \to \mathcal{A} \) is a centralizable mapping at a given point \(G \in \mathcal{A} \). The main result is the following theorem.

Theorem 2.1. Let \(\mathcal{A} \) be a von Neumann algebra acting on a Hilbert space \(\mathcal{H} \). Then every element \(G \) in \(\mathcal{A} \) is a full-centralizable point.

Before proving Theorem 2.1, we need the following several lemmas.

Lemma 2.2. Let \(\mathcal{A} \) be a unital Banach algebra with the form \(\mathcal{A} = \sum_{i \in \Lambda} \mathcal{A}_i \). Then \(\phi(\mathcal{A}_i) \subseteq \mathcal{A}_i \). Moreover, suppose \(G = \sum_{i \in \Lambda} G_i \), where \(G_i \in \mathcal{A}_i \). If \(G_i \) is a full-centralizable point in \(\mathcal{A}_i \) for every \(i \in \Lambda \), then \(G \) is a full-centralizable point in \(\mathcal{A} \).

Proof. Let \(I_i \) be the unit in \(\mathcal{A}_i \). Suppose that \(A_i \) is an invertible element in \(\mathcal{A}_i \), and \(t \) is an arbitrary nonzero element in \(\mathbb{C} \). It is easy to check that

\[
(I - I_i + t^{-1}GA_i^{-1})((I - I_i)G + tA_i) = G.
\]

So we have

\[
(I - I_i + t^{-1}GA_i^{-1})\phi((I - I_i)G + tA_i) = \phi(G).
\]

Considering the coefficient of \(t \), since \(t \) is arbitrarily chosen, we have \((I - I_i)\phi(A_i) = 0 \). It follows that \(\phi(A_i) = I_i\phi(A_i) \in \mathcal{A}_i \) for all invertible elements. Since \(\mathcal{A}_i \) is a Banach algebra, every element can be written into the sum of two
invertible elements. So the above equation holds for all elements in A_i. That is to say $\phi(A_i) \subseteq A_i$.

Let $\phi_i = \phi |_{A_i}$. For every A in A, we write $A = \sum_{i \in A} A_i$. Assume $AB = G$.

Since $A_iB_i = G_i$ and $\phi(A_i) \subseteq A_i$, we have

$$\sum_{i \in A} \phi(G_i) = \sum_{i \in A} \phi(A_i) \sum_{i \in A} B_i = \sum_{i \in A} \phi(A_i)B_i.$$

It implies that $\phi_i(G_i) = \phi_i(A_i)B_i$. Similarly, we can obtain $\phi_i(G_i) = A_i\phi_i(B_i)$.

By assumption, G_i is a full-centralizable point, so ϕ_i is a centralizer. Hence

$$\phi(A) = \sum_{i \in A} \phi_i(A_i) = \sum_{i \in A} \phi_i(I_i)A_i = \sum_{i \in A} \phi_i(I_i) \sum_{i \in A} A_i = \phi(I)A.$$

Similarly, we can prove $\phi(A) = A\phi(I)$. Hence G is a full-centralizable point. \qed

Lemma 2.3. Let A be a C^*-algebra. If G^* is a full-centralizable point in A, then G is a full-centralizable point in A.

Proof. Define a linear mapping $\tilde{\phi} : A \to A$ by: $\tilde{\phi}(A) = (\phi(A^*))^*$ for every A in A. For each A and B in A with $AB = G^*$, we have $B^*A^* = G$. It follows that $\phi(G) = \phi(B^*)A^* = B^*\phi(A^*)$. By the definition of $\tilde{\phi}$, we obtain $\tilde{\phi}(G^*) = \tilde{\phi}(A)B = A\tilde{\phi}(B)$. Since G^* is a full-centralizable point in A, we have that $\tilde{\phi}$ is a centralizer. Thus $\tilde{\phi}$ is also a centralizer. Hence G is a full-centralizable point in A. \qed

For a unital algebra A and a unital A-bimodule M, an element $A \in A$ is called a left separating point (resp. right separating point) of M if $AM = 0$ implies $M = 0$ ($MA = 0$ implies $M = 0$) for every $M \in M$.

Lemma 2.4. Let A be a unital Banach algebra and G be a left and right separating point in A. Then G is a full-centralizable point.

Proof. For every invertible element X in A, we have

$$\phi(I)G = \phi(G) = \phi(XX^{-1}G) = \phi(X)X^{-1}G.$$

Since G is a right separating point, we obtain $\phi(I) = \phi(X)X^{-1}$. It follows that $\phi(X) = \phi(I)X$ for each invertible element X and so for all elements in A. Similarly, we have that $\phi(X) = X\phi(I)$. Hence G is a full-centralizable point. \qed

Lemma 2.5. Let A be a von Neumann algebra. Then $G = 0$ is a full-centralizable point.

Proof. For any projection P in A, since $P(I - P) = (I - P)P = 0$, we have

$$\phi(P)(I - P) = P\phi(I - P) = \phi(I - P)P = (I - P)\phi(P) = 0.$$

It follows that $\phi(P) = \phi(I)P = P\phi(I)$. By [6, Proposition 2.4] and [4, Corollary 1.2], we know that ϕ is continuous. Since $A = \text{span}\{P \in A : P = P^* = P^2\}$,
it follows that \(\phi(A) = \phi(I)A = A\phi(I) \) for every \(A \in \mathcal{A} \). Hence \(G \) is a full-centralizable point. \(\square \)

Lemma 2.6. Let \(\mathcal{A} \) be a von Neumann algebra acting on a Hilbert space \(\mathcal{H} \) and \(P \) be the range projection of \(G \). If \(C(P) = C(I - P) = I \), then \(G \) is a full-centralizable point.

Proof. Set \(P_1 = P \), \(P_2 = I - P \), and denote \(P_i \mathcal{A} P_j \) by \(\mathcal{A}_{ij} \), \(i, j = 1, 2 \). For every \(A \in \mathcal{A} \), denote \(P_i \mathcal{A} P_j \) by \(\mathcal{A}_{ij} \).

Firstly, we claim that the condition \(A \mathcal{A}_{ij} = 0 \) implies \(AP_i = 0 \), and similarly, \(A_j A = 0 \) implies \(P_j A = 0 \). Indeed, since \(C(P_j) = I \), by [9, Proposition 5.5.2], the range of \(AP_j \) is dense in \(\mathcal{H} \). So \(AP_i AP_j = 0 \) implies \(AP_i = 0 \). On the other hand, if \(A_j A = 0 \), then \(A^* P_j = 0 \) and \(P_j A = 0 \).

Besides, since \(P_1 = P \) is the range projection of \(G \), we have \(P_1 G = G \). Moreover, if \(AG = 0 \), then \(AP_i = 0 \).

In the following, we assume that \(A_{ij} \) is an arbitrary element in \(\mathcal{A}_{ij} \), \(i, j = 1, 2 \), and \(t \) is an arbitrary nonzero element in \(\mathbb{C} \). Without loss of generality, we may assume that \(A_{11} \) is invertible in \(\mathcal{A}_{11} \).

Claim 1 \(\phi(A_{12}) \subseteq \mathcal{A}_{12} \).

Since \((P_1 + tA_{12})G = G \), we have \(\phi(G) = \phi(P_1 + tA_{12})G \). It implies that \(\phi(A_{12})G = 0 \). Hence \(\phi(A_{12})P_1 = 0 \).

By \((P_1 + tA_{12})G = G \), we also have \(\phi(G) = \phi(P_1 + tA_{12}) \phi(G) \). It follows that \(A_{12} \phi(G) = \phi(P_1)G = 0 \). So \(A_{12} \phi(P_1)P_1 = 0 \). Hence \(P_2 \phi(P_1)P_1 = 0 \).

Since \((A_{11} + tA_{11} A_{12})(A_{11}^{-1}G - A_{12}A_{22} + t^{-1}A_{22}) = G \), we have
\[
(2.1) \quad \phi(A_{11} + tA_{11} A_{12})(A_{11}^{-1}G - A_{12}A_{22} + t^{-1}A_{22}) = \phi(G).
\]

Since \(t \) is arbitrarily chosen in (2.1), we obtain
\[
\phi(A_{11})(A_{11}^{-1}G - A_{12}A_{22}) + \phi(A_{11} A_{12})A_{22} = \phi(G).
\]

Since \(A_{12} \) is also arbitrarily chosen, we can obtain
\[
\phi(A_{11})A_{12}A_{22} = \phi(A_{11} A_{12})A_{22}.
\]

Taking \(A_{22} = P_2 \), since \(\phi(A_{12})P_1 = 0 \), we have
\[
(2.2) \quad \phi(A_{11} A_{12}) = \phi(A_{11})A_{12}.
\]

Taking \(A_{11} = P_1 \), since \(P_2 \phi(P_1)P_1 = 0 \), we have
\[
(2.3) \quad P_2 \phi(A_{12}) = P_2 \phi(P_1)A_{12} = 0.
\]

So
\[
\phi(A_{12}) = \phi(A_{12})P_1 + P_1 \phi(A_{12})P_2 + P_2 \phi(A_{12})P_2
\]
\[
= P_1 \phi(A_{12})P_2 \subseteq \mathcal{A}_{12}.
\]

Claim 2 \(\phi(A_{11}) \subseteq \mathcal{A}_{11} \).

Considering the coefficient of \(t^{-1} \) in (2.1), we have \(\phi(A_{11})A_{22} = 0 \). Thus \(\phi(A_{11})P_2 = 0 \). By (2.2), we obtain \(P_2 \phi(A_{11})A_{12} = P_2 \phi(A_{11} A_{12}) = 0 \). It follows that \(P_2 \phi(A_{11})P_1 = 0 \). Therefore, \(\phi(A_{11}) = P_1 \phi(A_{11})P_1 \subseteq \mathcal{A}_{11} \).
Therefore,

\[P \]

Thus

\[\phi \]

Hence

\((2.5) \)

\[Q \]

Case 1

\[\ker \]

that

\(\phi \)

3

\[I \]

A

\(\Box \)

point.

Similarly, we can prove that

\[P \]

Therefore,

\[\phi(A_{22}) = A_{12}\phi(A_{22}). \]

Claim 4

\[\phi(A_{21}) \subseteq A_{21}. \]

Since

\[(A_{11} + tA_{11}A_{12})(A_{11}^{-1}G - A_{12}A_{21} + t^{-1}A_{21}) = G, \]

we have

\((A_{11} + tA_{11}A_{12})\phi(A_{11}^{-1}G - A_{12}A_{21} + t^{-1}A_{21}) = \phi(G). \)

According to this equation, we can similarly obtain that

\(P_{1}\phi(A_{21}) = 0 \) and

\((2.5) \)

\[A_{12}\phi(A_{21}) = \phi(A_{12}A_{21}). \]

Hence

\(A_{12}\phi(A_{21})P_{2} = \phi(A_{12}A_{21})P_{2} = 0. \)

Therefore, \(\phi(A_{21}) = P_{2}\phi(A_{21})P_{1} \subseteq A_{21}. \)

Claim 5

\[\phi(A_{ij}) = \phi(P_{i})A_{ij} = A_{ij}\phi(P_{j}) \]

for each \(i, j \in \{1, 2\}. \)

By taking \(A_{11} = P_{1} \) in (2.2), we have

\(\phi(A_{12}) = \phi(P_{1})A_{12}. \)

By taking

\[A_{22} = P_{2} \text{ in (2.4), we have } \phi(A_{12}) = A_{12}\phi(P_{2}). \]

By (2.2), we have

\(\phi(A_{11})A_{12} = \phi(A_{11}A_{12}) = \phi(P_{1})A_{11}A_{12}. \)

It follows that

\(\phi(A_{11}) = \phi(P_{1})A_{11}. \)

On the other hand, \(\phi(A_{11})A_{12} = \phi(A_{11}A_{12}) = A_{11}A_{12}\phi(P_{2}) = A_{11}\phi(A_{12}) = A_{11}\phi(P_{1})A_{12}. \)

It follows that

\(\phi(A_{11}) = A_{11}\phi(P_{1}). \)

By (2.4) and (2.5), through a similar discussion as above, we can obtain that

\(\phi(A_{22}) = A_{22}\phi(P_{2}) = \phi(P_{2})A_{22} \)

and

\(\phi(A_{21}) = A_{21}\phi(P_{1}) = \phi(P_{2})A_{21}. \)

Now we have proved that \(\phi(A_{ij}) \subseteq A_{ij} \) and

\(\phi(A_{ij}) = \phi(P_{i})A_{ij} = A_{ij}\phi(P_{j}). \)

It follows that

\(\phi(A) = \phi(A_{11} + A_{12} + A_{21} + A_{22}) = \phi(P_{1})(A_{11} + A_{12} + A_{21} + A_{22}) + \phi(P_{2})(A_{11} + A_{12} + A_{21} + A_{22}) = \phi(I)A. \)

Similarly, we can prove that \(\phi(A) = A\phi(I). \)

Hence \(G \) is a full-centralizable point.

Proof of Theorem 2.1. Suppose the range projection of \(G \) is \(P. \) Set

\[Q_{1} = I - C(I - P), \]

\[Q_{2} = I - C(P), \]

and

\[Q_{3} = I - Q_{1} - Q_{2}. \]

Since \(Q_{1} \subseteq P \) and

\[Q_{2} \subseteq I - P, \]

\(\{Q_{i}\}_{i=1,2,3} \) are mutually orthogonal central projections. Therefore

\[A = \sum_{i=1}^{3} A_{i} = \sum_{i=1}^{3} (Q_{i}A). \]

Obviously, \(A_{i} \) is also a von Neumann algebra acting on \(Q_{i}H. \) For each element \(A \) in \(A, \) we write

\[A = \sum_{i=1}^{3} A_{i} = \sum_{i=1}^{3} Q_{i}A. \]

We divide our proof into two cases.

Case 1

\[\ker(G) = \{0\}. \]
Since $Q_1 \leq P$, we have $\text{ran} G_1 = \text{ran} Q_1 G = Q_1 \mathcal{H}$. Since G is injective on \mathcal{H}, $G_1 = Q_1 G$ is also injective on $Q_1 \mathcal{H}$. Hence G_1 is a separating point (both right and left) in A. By Lemma 2.4, G_1 is a full-centralizable point in A.

Since $Q_2 \leq I - P$, we have $G_2 = Q_2 G = 0$. By Lemma 2.5, G_2 is a full-centralizable point in A.

We write $G = [A M]$. By Lemma 2.2, G is a full-centralizable point in A.

Case 2 $\ker(G) \neq \{0\}$.

In this case, G_2 and G_3 are still full-centralizable points. Since $\text{ran} G_1 = Q_1 H$, we have $\ker(G_1) = \{0\}$. By Case 1, G_1 is a full-centralizable point in A.

By Lemma 2.3, G_3 is also a full-centralizable point in A.

By Lemma 2.2, G is a full-centralizable point.

3. Centralizers on triangular algebras

In this section, we characterize the full-centralizable points on triangular algebras. The following theorem is our main result.

Theorem 3.1. Let $\mathcal{J} = [A M]$ be a triangular algebra, where A and B are two unital Banach algebras. Then every G in \mathcal{J} is a full-centralizable point.

Proof. Let $\phi : \mathcal{J} \to \mathcal{J}$ be a centralizable mapping at G.

Since ϕ is linear, for every $[X Y Z]$ in \mathcal{J}, we write

$$\phi \begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix} = \begin{bmatrix} f_{11}(X) + g_{11}(Y) + h_{11}(Z) & f_{12}(X) + g_{12}(Y) + h_{12}(Z) \\ 0 & f_{22}(X) + g_{22}(Y) + h_{22}(Z) \end{bmatrix},$$

where $f_{11} : A \to A$, $f_{12} : A \to M$, $f_{22} : A \to B$, $g_{11} : M \to A$, $g_{12} : M \to M$, $g_{22} : M \to B$, $h_{11} : B \to A$, $h_{12} : B \to M$, $h_{22} : B \to B$, are all linear mappings.

In the following, we denote the units of A and B by I_1 and I_2, respectively. We write $G = [A M]$ and

\begin{equation}
\phi \begin{bmatrix} A & M \\ 0 & B \end{bmatrix} = \begin{bmatrix} f_{11}(A) + g_{11}(M) + h_{11}(B) & f_{12}(A) + g_{12}(M) + h_{12}(B) \\ 0 & f_{22}(A) + g_{22}(M) + h_{22}(B) \end{bmatrix}.
\end{equation}

We divide our proof into several steps.

Claim 1 $f_{12} = f_{22} = 0$.

Let $S = [X M]$ and $T = \begin{bmatrix} X^{-1} A & \phi \end{bmatrix}$, where X is an invertible element in A. Since $ST = G$, we have
φ(G) = φ(S)T
= \begin{bmatrix}
 f_{11}(X) + g_{11}(M) + h_{11}(B) & f_{12}(X) + g_{12}(M) + h_{12}(B) \\
 0 & f_{22}(X) + g_{22}(M) + h_{22}(B)
\end{bmatrix}
\begin{bmatrix}
 X^{-1}A & 0 \\
 0 & I_2
\end{bmatrix}
(3.2)
= \begin{bmatrix}
 f_{11}(X) + g_{11}(M) + h_{11}(B) & f_{12}(X) + g_{12}(M) + h_{12}(B) \\
 f_{22}(X) + g_{22}(M) + h_{22}(B) & 0
\end{bmatrix}.

By comparing (3.1) with (3.2), we obtain
\begin{align*}
 & f_{12}(X) = f_{12}(A) \quad \text{and} \quad f_{22}(X) = f_{22}(A) \\
 & \text{for each invertible element } X \text{ in } \mathcal{A}.
\end{align*}
Noting that \(A \) is a fixed element, for any nonzero element \(\lambda \) in \(\mathcal{C} \), we have \(f_{12}(\lambda X) = f_{12}(A) = \lambda f_{12}(X) = \lambda f_{12}(A) \). It follows that \(f_{12}(X) = 0 \) for each invertible element \(X \). Thus \(f_{12}(X) = 0 \) for all \(X \) in \(\mathcal{A} \). Similarly, we can obtain \(f_{22}(X) = 0 \).

Claim 2 \(h_{12} = h_{11} = 0 \).

Let \(S = \begin{bmatrix}
 I_1 & 0 \\
 0 & BZ^{-1}
\end{bmatrix} \) and \(T = \begin{bmatrix}
 A & Y \\
 0 & h_1
\end{bmatrix} \), where \(Z \) is an invertible element in \(\mathcal{B} \).

Since \(ST = G \), we have
\[
\phi(G) = S\phi(T)
= \begin{bmatrix}
 I_1 & 0 \\
 0 & BZ^{-1}
\end{bmatrix}
\begin{bmatrix}
 f_{11}(A) + g_{11}(M) + h_{11}(Z) & f_{12}(A) + g_{12}(M) + h_{12}(Z) \\
 f_{22}(A) + g_{22}(M) + h_{22}(Z) & 0
\end{bmatrix}
(3.3)
= \begin{bmatrix}
 f_{11}(A) + g_{11}(M) + h_{11}(Z) & f_{12}(A) + g_{12}(M) + h_{12}(Z) \\
 0 & *
\end{bmatrix}.
\]

By comparing (3.1) with (3.3), we obtain \(h_{12}(Z) = h_{12}(B) \) and \(h_{11}(Z) = h_{11}(B) \) for each invertible element \(Z \) in \(\mathcal{B} \). Similarly as the previous discussion, we can obtain \(h_{12}(Z) = h_{11}(Z) = 0 \) for all \(Z \) in \(\mathcal{B} \).

Claim 3 \(g_{22} = g_{11} = 0 \).

For every \(Y \) in \(\mathcal{M} \), we set \(S = \begin{bmatrix}
 I_1 & M - Y \\
 0 & B
\end{bmatrix} \), \(T = \begin{bmatrix}
 A & Y \\
 0 & h_1
\end{bmatrix} \). Obviously, \(ST = G \).

Thus we have
\[
\phi(G) = \phi(S)T
= \begin{bmatrix}
 * & * \\
 0 & f_{22}(I_1) + g_{22}(M - Y) + h_{22}(B)
\end{bmatrix}
\begin{bmatrix}
 A & Y \\
 0 & I_2
\end{bmatrix}
(3.4)
= \begin{bmatrix}
 * & * \\
 0 & f_{22}(I_1) + g_{22}(M - Y) + h_{22}(B)
\end{bmatrix}.
\]

By comparing (3.1) with (3.4), we obtain
\[
 f_{22}(I_1) + g_{22}(M - Y) + h_{22}(B) = f_{22}(A) + g_{22}(M) + h_{22}(B).
\]
Hence \(g_{22}(Y) = f_{22}(I_1 - A) \). It means \(g_{22}(Y) = 0 \) immediately.

On the other hand,
\[
\phi(G) = S\phi(T)
= \begin{bmatrix}
 I_1 & M - Y \\
 0 & B
\end{bmatrix}
\begin{bmatrix}
 f_{11}(A) + g_{11}(Y) + h_{11}(I_2) & * \\
 0 & *
\end{bmatrix}
(3.5)
= \begin{bmatrix}
 f_{11}(A) + g_{11}(Y) + h_{11}(I_2) & * \\
 0 & *
\end{bmatrix}.
By comparing (3.1) with (3.5), we obtain $g_{11}(Y) = g_{11}(M) + h_{11}(B - I_2)$. Hence $g_{11}(Y) = 0$.

According to the above three claims, we obtain that

$$
\phi \begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix} = \begin{bmatrix} f_{11}(X) & g_{12}(Y) \\ 0 & h_{22}(Z) \end{bmatrix}
$$

for every $\begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix}$ in J.

Claim 4 $f_{11}(X) = f_{11}(I_1)X$ for all X in A, and $g_{12}(Y) = f_{11}(I_1)Y$ for all Y in M.

Let $S = \begin{bmatrix} X & M-XY \\ 0 & B \end{bmatrix}$ and $T = \begin{bmatrix} X^{-1}A & Y \\ 0 & I_2 \end{bmatrix}$, where X is an invertible element in A, and Y is an arbitrary element in M. Since $ST = G$, we have

$$
\phi(G) = \phi(S)T
= \begin{bmatrix} f_{11}(X) & g_{12}(M - XY) \\ 0 & h_{22}(B) \end{bmatrix} \begin{bmatrix} X^{-1}A & Y \\ 0 & I_2 \end{bmatrix}
= \begin{bmatrix} * & f_{11}(X)Y + g_{12}(M - XY) \\ 0 & * \end{bmatrix}
= \begin{bmatrix} f_{11}(A) & g_{12}(M) \\ 0 & h_{22}(B) \end{bmatrix}.
$$

(3.6)

So we have $f_{11}(X)Y = g_{12}(XY)$. It follows that

$$
g_{12}(Y) = f_{11}(I_1)Y
$$

by taking $X = I_1$. Replacing Y in (3.7) with XY, we can obtain $g_{12}(XY) = f_{11}(I_1)XY = f_{11}(X)Y$ for each invertible element X in A and Y in M. Since M is faithful, we have

$$
f_{11}(X) = f_{11}(I_1)X
$$

for all invertible elements X and so for all elements in A.

Claim 5 $h_{22}(Z) = Zh_{22}(I_2)$ for all Z in B, and $g_{12}(Y) = Yh_{22}(I_2)$ for all Y in M.

Let $S = \begin{bmatrix} I_1 & Y \\ 0 & BZ^{-1} \end{bmatrix}$ and $T = \begin{bmatrix} A & M - YZ \\ 0 & Z \end{bmatrix}$, where Z is an invertible element in B, and Y is an arbitrary element in M. Since $ST = G$, we have

$$
\phi(G) = S\phi(T)
= \begin{bmatrix} I_1 & Y \\ 0 & BZ^{-1} \end{bmatrix} \begin{bmatrix} f_{11}(A) & g_{12}(M - YZ) \\ 0 & h_{22}(Z) \end{bmatrix}
= \begin{bmatrix} * & g_{12}(M - YZ) + Yh_{22}(Z) \\ 0 & * \end{bmatrix}
= \begin{bmatrix} f_{11}(A) & g_{12}(M) \\ 0 & h_{22}(B) \end{bmatrix}.
$$

(3.9)
So we have \(g_{12}(YZ) = Y h_{22}(Z) \). Through a similar discussion as the proof of Claim 4, we obtain \(h_{22}(Z) = Z h_{22}(I_2) \) for all \(Z \) in \(B \) and \(g_{12}(Y) = Y h_{22}(I_2) \) for all \(Y \) in \(M \).

Thus we have that

\[
\phi \begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix} = \begin{bmatrix} f_{11}(I_1)X & f_{11}(I_1)Y \\ 0 & Z h_{22}(I_2) \end{bmatrix} = \begin{bmatrix} f_{11}(I_1)X & Y h_{22}(I_2) \\ 0 & Z h_{22}(I_2) \end{bmatrix}
\]

for every \([X \ Y]_2 \in J\). So it is sufficient to show that \(f_{11}(I_1)X = X f_{11}(I_1) \) for all \(X \) in \(\mathcal{A} \), and \(h_{22}(I_2)Z = Z h_{22}(I_2) \) for all \(Z \) in \(B \). Since \(f_{11}(I_1)Y = Y h_{22}(I_2) \) for all \(Y \) in \(M \), we have \(f_{11}(I_1)XY = X Y h_{22}(I_2) = X f_{11}(I_1)Y \). It implies that \(f_{11}(I_1)X = X f_{11}(I_1) \). Similarly, \(h_{22}(I_2)Z = Z h_{22}(I_2) \). Now we can obtain that \(\phi(J) = \phi(I)J = J \phi(I) \) for all \(J \) in \(J \), where \(I = \begin{bmatrix} 1 & 0 \\ 0 & I_2 \end{bmatrix} \) is the unit of \(J \). Hence, \(G \) is a full-centralizable point.

As applications of Theorem 3.1, we have the following corollaries.

Corollary 3.2. Let \(\mathcal{A} \) be a nest algebra on a Hilbert space \(\mathcal{H} \). Then every element in \(\mathcal{A} \) is a full-centralizable point.

Proof. If \(\mathcal{A} = B(\mathcal{H}) \), then the result follows from Theorem 2.1. Otherwise, \(\mathcal{A} \) is isomorphic to a triangular algebra. By Theorem 3.1, the result follows.

Corollary 3.3. Let \(\mathcal{A} \) be a CDCSL (completely distributive commutative sub-space lattice) algebra on a Hilbert space \(\mathcal{H} \). Then every element in \(\mathcal{A} \) is a full-centralizable point.

Proof. It is known that \(\mathcal{A} \cong \sum_{i \in \Lambda} \bigoplus \mathcal{A}_i \), where each \(\mathcal{A}_i \) is either \(B(\mathcal{H}_i) \) for some Hilbert space \(\mathcal{H}_i \) or a triangular algebra \(\text{Tri}(B, \mathcal{M}, \mathcal{C}) \) such that the conditions of Theorem 3.1 hold (see in [8] and [15]). By Lemma 2.2, the result follows.

Remark. For the definition of a CDCSL algebra, we refer to [5].

4. Derivations on von Neumann algebras

In this section, we characterize the derivable mappings at a given point in a von Neumann algebra.

Lemma 4.1. Let \(\mathcal{A} \) be a von Neumann algebra. Suppose \(\Delta : \mathcal{A} \to \mathcal{A} \) is a linear mapping such that \(\Delta(A)B + A \Delta(B) = 0 \) for each \(A \) and \(B \) in \(\mathcal{A} \) with \(AB = 0 \). Then \(\Delta = D + \phi \), where \(D : \mathcal{A} \to \mathcal{A} \) is a derivation, and \(\phi : \mathcal{A} \to \mathcal{A} \) is a centralizer. In particular, \(\Delta \) is bounded.

Proof. Case 1. \(\mathcal{A} \) is an abelian von Neumann algebra. In this case, \(\mathcal{A} \cong C(\mathcal{X}) \) for some compact Hausdorff space \(\mathcal{X} \). If \(AB = 0 \), then the supports of \(A \) and \(B \) are disjoint. So the equation \(\Delta(A)B + A \Delta(B) = 0 \) implies that \(\Delta(A)B = A \Delta(B) = 0 \). By Lemma 2.5, \(\Delta \) is a centralizer.
Case 2. \(A \cong M_n(B)(n \geq 2) \), where \(B \) is also a von Neumann algebra. By [1, Theorem 2.3], \(\Delta \) is a generalized derivation with \(\Delta(I) \) in the center. That is to say, \(\Delta \) is a sum of a derivation and a centralizer.

For general cases, we know \(A \cong \sum_{i=1}^{n} \oplus A_i \), where each \(A_i \) coincides with either Case 1 or Case 2. We write \(A = \sum_{i=1}^{n} A_i \) with \(A_i \in A_i \) and denote the restriction of \(\Delta \) in \(A_i \) by \(\Delta_i \). It is not difficult to check that \(\Delta(A_i) \in A_i \). Moreover, setting \(A_i B_i = 0 \), we have \(\Delta(A_i)B_i + A_i \Delta(B_i) = \Delta_i(A_i)B_i + A_i \Delta_i(B_i) = 0 \). By Case 1 and Case 2, each \(\Delta_i \) is a sum of a derivation and a centralizer. Hence, \(\Delta = \sum_{i=1}^{n} \Delta_i \) is a sum of a derivation and a centralizer. \(\square \)

Remark. In [10], the authors prove that for a prime semisimple Banach algebra \(A \) with nontrivial idempotents and a linear mapping \(\Delta \) from \(A \) to itself, the condition \(\Delta(A)B + AB \Delta(B) = 0 \) for each \(A \) and \(B \) in \(A \) implies that \(\Delta \) is bounded. By Lemma 4.1, we have that for a von Neumann algebra \(A \), the result holds still even if \(A \) is not prime.

Now we prove our main result in this section.

Theorem 4.2. Let \(A \) be a von Neumann algebra acting on a Hilbert space \(\mathcal{H} \), and \(G \) be a given point in \(A \). If \(\Delta : A \to A \) is a linear mapping derivable at \(G \), then \(\Delta = D + \phi \), where \(D \) is a derivation, and \(\phi \) is a centralizer. Moreover, \(G \) is a full-derivable point if and only if \(\mathcal{C}(G) = I \).

Proof. Suppose the range projection of \(G \) is \(P \). We note that \(\mathcal{C}(G) = \mathcal{C}(P) \).

Set \(Q_1 = I - \mathcal{C}(I - P) \), \(Q_2 = I - \mathcal{C}(P) \), and \(Q_3 = I - Q_1 - Q_2 \). Then we have \(A = \sum_{i=1}^{3} \oplus A_i = \sum_{i=1}^{3} \oplus (Q_iA) \). For every \(A \) in \(A \), we write \(A = \sum_{i=1}^{3} A_i = \sum_{i=1}^{3} Q_iA \).

For any central projection \(Q \), setting \(Q^\perp = I - Q \), we have

\[
(Q^\perp + t^{-1}QGA^{-1})(Q^\perp G + tQA) = G,
\]

where \(A \) is an arbitrary invertible element in \(A \), and \(t \) is an arbitrary nonzero element in \(\mathbb{C} \). So we obtain

\[
\Delta(G) = (Q^\perp + t^{-1}QGA^{-1})\Delta(Q^\perp G + tQA) + \Delta(Q^\perp G + tQA - Q^\perp G - tQA).
\]

Considering the coefficient of \(t \), we obtain \(Q^\perp \Delta(QA) + \Delta(Q^\perp)(QA) = 0 \). Since the ranges of \(Q \) and \(Q^\perp \) are disjoint, it follows that \(Q^\perp \Delta(QA) = 0 \) and so \(\Delta(QA) \in QA \). Since \(Q_i \) are central projections, we have \(\Delta(A_i) \subseteq A_i \).

Denote the restriction of \(\Delta \) to \(A_i \) by \(\Delta_i \). Setting \(A_i B_i = G_i \), it is not difficult to check that \(\Delta_i(G_i) = \Delta(A_i)B_i + A_i \Delta(B_i) \).

Since \(Q_1 \leq P \), we have \(\text{ran}G_1 = \text{ran}Q_1G = Q_1H \). So \(G_1 \) is a right separating point in \(A_1 \). By [13, Corollary 2.5], \(\Delta_1 \) is a Jordan derivation and so is a derivation on \(A_1 \).

Since \(Q_2 \leq I - P \), we have \(G_2 = Q_2G = 0 \). By Lemma 4.1, \(\Delta_2 \) is a sum of a derivation and a centralizer on \(A_2 \).

Note that \(\text{ran}G_3 = \text{ran}Q_3G = Q_3P = P_3 \). As we proved before, \(\mathcal{C}_{A_3}(P_3) = \mathcal{C}_{A_3}(Q_3 - P_3) = Q_3 \). So by [16, Theorem 3.1], \(\Delta_3 \) is a derivation on \(A_3 \).
Hence, $\Delta = \sum_{i=1}^{3} \Delta_i$ is a sum of a derivation and a centralizer.

If $C(G) = I$, then $Q_2 = 0$, $A = A_1 \oplus A_3$ and $G = G_1 + G_3$ is a full-derivable point. If $C(G) \neq I$, then $Q_2 \neq 0$. Define a linear mapping $\delta : A \to A$ by $\delta(A) = A_2$ for all $A \in A$. One can check that δ is not a derivation but derivable at G. Thus G is not a full-derivable point.

As an application, we obtain the following corollary.

Corollary 4.3. Let A be a von Neumann algebra. Then A is a factor if and only if every nonzero element G in A is a full-derivable point.

Proof. If A is a factor, for each nonzero element G in A, we know that $C(G) = I$. By Theorem 4.2, G is a full-derivable point.

If A is not a factor, then there exists a nontrivalent central projection P. Define a linear mapping $\delta : A \to A$ by $\delta(A) = (I - P)A$ for all $A \in A$. One can check that δ is not a derivation but derivable at P. Thus P is not a full-derivable point.

Acknowledgements. This paper was partially supported by National Natural Science Foundation of China(Grant No. 11371136).

References

Jun He
Department of Mathematics
East China University of Science and Technology
Shanghai 200237, P. R. China
E-mail address: hejun_128163.com

Jiankui Li
Department of Mathematics
East China University of Science and Technology
Shanghai 200237, P. R. China
E-mail address: jiankuili@yahoo.com

Wenhua Qian
Research Center for Operator Algebras
Department of Mathematics
East China Normal University
3663 North Zhongshan Road, Shanghai 200062, P. R. China
E-mail address: whqian86@163.com