DOI QR코드

DOI QR Code

산지유역 기반의 토석류 취약성 분석을 통한 재해방지 계획수립 연구

Disaster Prevention Planning through Analysis of Debris Flow Vulnerability Based on Mountain Basin Features

  • 김만일 (산림조합중앙회 산림공학연구소) ;
  • 이문세 (산림조합중앙회 산림공학연구소) ;
  • 홍관표 (산림조합중앙회 산림공학연구소)
  • Kim, Man-Il (Forest Engineering Research Institute, National Forestry Cooperative Federation) ;
  • Lee, Moon-Se (Forest Engineering Research Institute, National Forestry Cooperative Federation) ;
  • Hong, Kwan-Pyo (Forest Engineering Research Institute, National Forestry Cooperative Federation)
  • 투고 : 2017.11.06
  • 심사 : 2017.12.01
  • 발행 : 2017.12.30

초록

최근 10년간(2005~2014) 산지재해 발생현황을 분석해 보면 산지재해 발생 총면적은 4,393 ha, 연평균 인명피해는 7명, 연평균 산지재해 복구비는 798억원으로 사회 경제적 피해가 발생하였다. 산지재해는 1차적으로 산지사면에서 산사태가 발생되어 2차적으로 계류를 따라 토석류로 이동 및 확산되면서 산지 하부지역의 시설지와 주거지에 피해를 발생시킨다. 이러한 산지재해의 발생원인은 자연적인 요인으로 태풍, 국지성 강우 등이 있으며, 인위적인 요인으로 산지 개발로 인한 산지지반의 훼손 등이 있다. 본 연구에서는 연구지역을 3개 유역으로 구획하고, 산지유역의 지형, 지질, 산림 특성을 고려하여 FLO-2D 분석 결과를 반영한 토석류 취약성 평가 방안을 제시하였다. 또한 잠재적 산지재해에 대한 조사, 분석, 평가 방안에 따라 산지사면 및 계류에 대한 취약성 분석을 통해 잠재적 산지재해의 발생 위험유역을 평가하였다. 이를 통해 산림유역 기반의 종합적인 재해방지시설 계획의 수립 방안을 제시하였다.

Mountain disasters in Korea have caused massive social and economic damage. During the period 2005-2014 there has been an annual average of 7 deaths and disaster recovery costs of 79.8 billion won in the country's 4393 ha of mountainous areas. The primary mountain disasters are landslides on mountain slopes, and secondary debris flows can spread along mountain streams, damaging facilities and settlements in lower areas. Typhoons and local rainfall can cause such disasters, while anthropogenic factors include development that damages the mountainous terrain. The study area was divided into three basins. For each basin, a debris flow vulnerability assessment method was proposed considering FLO-2D analysis results and the local topography, geology, and forestation. To establish an in situ investigation, analysis, and evaluation plan for potential mountain disasters, we selected mountain basins that are potentially vulnerable to mountain disasters through analysis of their mountain slopes and streams. This work suggests the establishment of a comprehensive plan for disaster prevention based on a mountain basin feature.

키워드

참고문헌

  1. Choi, D. Y. and Paik, J. C., 2012, Characteristics of runout distance of debris flows in Korea, Journal of the Korean Society of Civil Engineering, 32(3B), 193-201. https://doi.org/10.12652/Ksce.2012.32.5C.193
  2. FLO-2D Software, INC., 2009, FLO-2D reference manual.
  3. Hwang, H. G., Lee, S. W., Kim, G. H., Choi, B. K., and Yune, C. Y., 2013, Analysis of slope hazard-triggering rainfall and geological characteristics in 2011 and 2012, Journal of Korean Society of Hazard Mitigation, 13(6), 179-189. https://doi.org/10.9798/KOSHAM.2013.13.6.179
  4. KIGAM, 1976, Explanatory text of the geological map of Gusandong sheet (Scale 1:50,000), 51p.
  5. Jang, C. B., Choi, Y. N., and Yoo, N. J., 2017, Journal of the Korean Geo-Environmental Society, 18(1), 13-21.
  6. Kim, M. -I., Lee, M. -S., Chang, B. -S., Bang, D. -S., and Lee, J. -G., 2011, Countermeasure and pending issue of facility standards for dealing with debris flow hazards, The Korean Society of Engineering Geology conference, 87-92.
  7. Kim, M. -I., Lee, S. -W., and Kim, B. -S., 2017, Slope stability assessment induced by variation in mountain topography and rainfall infiltration, The Journal of Engineering Geology, 27(2), 125-132. https://doi.org/10.9720/KSEG.2017.2.125
  8. Korea Forest Service, 2015a, Comprehensive measures to prevent landslide in 2015.
  9. Korea Forest Service, 2015b, Investigate landslide areas and Guidance on management of landslide vulnerable areas, 28p.
  10. Korea Forest Service, 2013, Integrated management plan of landslide occurrence risk area, 119p.
  11. Korea Forest Service, 2012, Field manual of landslide prevention and countermeasure, 104p.
  12. Kuichling, E., 1889, The relation between the rainfall and runoff from small urban area, Transaction of ASCE, 101, pp.143-183.
  13. Lee, C. W., Woo, C. S., and Kim, D. Y., 2014, Standard procedures for investigation of potential debris flows torrent and area in Japan, Journal of the Korean Society of Forest Engineering, 12(1), 1-25.
  14. Lee, H. J., Tak, W. J., and Jun, K. W., 2015, Simulation of debris flow using RAMMS model, Crisis and Emergency Management : Theory and Practice, 11(2), 177-187.
  15. Papathoma-Khle, M., 2016, Vulnerability curves vs. vulnerability indicators: application of an indicator-based methodology for debris-flow hazards, Natural Hazards and Earth System Sciences, 16, 1771-1790. https://doi.org/10.5194/nhess-16-1771-2016
  16. Takahashi, T., 2014, Debris flow, 2nd edition, - Mechanics, Prediction and Countermeasures, CRC Press, 572p.
  17. Won, S. Y., Lee, S. W., Paik, J. C., Yune, C.-Y., and Kim, G. H., 2016, Analysis of erosion in debris flow experiment using terrestrial LiDAR, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 34(3), 309-317. https://doi.org/10.7848/ksgpc.2016.34.3.309