DOI QR코드

DOI QR Code

Reconstructing Flaw Image Using Dataset of Full Matrix Capture Technique

Full Matrix Capture 데이터를 이용한 균열 영상화

  • 이태훈 (한국수력원자력(주) 중앙연구원) ;
  • 김용식 (한국수력원자력(주) 중앙연구원) ;
  • 이정석 (한국수력원자력(주) 중앙연구원)
  • Received : 2017.01.10
  • Accepted : 2017.02.03
  • Published : 2017.02.28

Abstract

A conventional phased array ultrasonic system offers the ability to steer an ultrasonic beam by applying independent time delays of individual elements in the array and produce an ultrasonic image. In contrast, full matrix capture (FMC) is a data acquisition process that collects a complete matrix of A-scans from every possible independent transmit-receive combination in a phased array transducer and makes it possible to reconstruct various images that cannot be produced by conventional phased array with the post processing as well as images equivalent to a conventional phased array image. In this paper, a basic algorithm based on the LLL mode total focusing method (TFM) that can image crack type flaws is described. And this technique was applied to reconstruct flaw images from the FMC dataset obtained from the experiments and ultrasonic simulation.

일반 위상배열초음파 시스템은 배열된 개별의 소자에 시간지연을 적용함으로써 초음파 빔을 조향하고 초음파 이미지를 구성한다. 반면, full matrix capture(FMC)은 위상배열탐촉자에서 가능한 모든 송수신 조합의 A-scan 데이터 전체를 수집하는 신호 수집 방법이며, FMC 데이터의 후처리를 통해 기존 위상배열초음파와 동등한 이미지뿐만 아니라 기존 위상배열초음파에서 구현하지 못하는 다양한 이미지를 합성할 수 있다. 본 논문에서는, 균열 형태의 결함을 영상화할 수 있는 LLL mode total focusing method(TFM)에 대한 기본 알고리즘을 기술하고, 실험 및 초음파 시뮬레이션을 통해 수집된 FMC 데이터에 대해 이 기법을 적용하여 결함의 이미지를 합성하였다.

Keywords

References

  1. Olympus NDT, "Advances in Phased Array Ultrasonic Technology Applications," Olympus NDT, Waltham, MA, USA, pp. 7-14 (2007)
  2. Y.-S. Cho and J.-H. Kim, "A small crack length evaluation technique by electronic scanning," Journal of the Korean Society for Nondestructive Testing, Vol. 29, No. 1, pp. 15-20 (2009)
  3. C. Holmes, B. W. Drinkwater and P. D. Wilcox, "Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation," NDT&E International, Vol. 38, pp. 701-711 (2005) https://doi.org/10.1016/j.ndteint.2005.04.002
  4. P. Tremblay, D. Richard and H. Ann, "Development and validation of a full matrix capture solution," 2012 KSNT Workshop, pp. 85-94 (2012)
  5. K. Nakahata, M. Hirata and S. Hirose, "Flaw reconstruction from scattering amplitude using full-waveform sampling and processing," Journal of The Japanese Society for Non-Destructive Inspection, Vol. 59, No. 6, pp. 277-283 (2010)
  6. A. Bulavinov and M. Kroning, "Real-time quantitative ultrasonic inspection," IV Conferencia Panamericana de END Buenos Aires, pp. 1-15 (2007)
  7. T.-H. Lee, B.-S. Yoon, and K.-Y. Moon, "Reconstructing Ultrasonic Image Using Dataset by Full Matrix Capture Technique", Proceedings of 2014 Annual Fall Conference of KSNT, pp. 385-392 (2014)
  8. T.-H. Lee, B.-S. Yoon and J.-S. Lee, "Study on enhancements to ultrasonic data imaging using full matrix capture technique," Journal of the Korean Society for Nondestructive Testing, Vol. 25, No. 5, pp. 299-306 (2009)
  9. E. Carcreff and D. Braconnier, "Comparison of conventional technique and migration approach for total focusing," Physics Procedia, Vol. 70, pp. 566-569 (2015) https://doi.org/10.1016/j.phpro.2015.08.022
  10. L. Le Jeune, S. Robert, P. Dumas, A. Membre and C. Prada, "Adaptive ultrasonic imaging with the total focusing method for inspection of complex components immersed in water," In D. E. Chimenti, & L. J. Bond (Eds.) AIP Conference Proceedings, Vol. 1650. No. 1. pp. 1037-1046 (2015)
  11. M. V. Felicen, A. Velichko and P. D. Wilcox, "Accurate depth measurement of small surface-breaking cracks using an ultrasonic array post-processing technique," NDT&E International, Vol. 68, pp. 105-112, (2014) https://doi.org/10.1016/j.ndteint.2014.08.004
  12. O. Casula, G. Toullelan, O. Roy and P. Dumas, "Ultrasonic nondestructive testing of complex components with flexible phased-array transducers," 10th European Conference on Non-Destructive Testing, pp. 7-11 (2010)