DOI QR코드

DOI QR Code

Structural and emulsification properties of octenyl succinylated potato dextrin upon different preparation methods

OSA-감자 덱스트린의 구조 및 유화 특성 연구

  • Han, Yu-Jin (Department of Foodservice Management and Nutrition, Sangmyung University) ;
  • Li, Shun Ji (Department of Foodservice Management and Nutrition, Sangmyung University) ;
  • Han, Jung-Ah (Department of Foodservice Management and Nutrition, Sangmyung University)
  • 한유진 (상명대학교 외식영양학과) ;
  • 이순희 (상명대학교 외식영양학과) ;
  • 한정아 (상명대학교 외식영양학과)
  • Received : 2016.09.05
  • Accepted : 2016.10.03
  • Published : 2017.02.28

Abstract

Octenyl succinylated (OSA) potato starch was dextrinized by two methods: ultrasound (at 25, 50, or $70^{\circ}C$ for 1 h; OSA-25UT, OSA-50UT, and OSA-70UT, respectively) and acid hydrolysis (for 1 or 4 h; OSA-AD1H or OSA-AD4H, respectively), and the properties of the resulting starch were analyzed. The melting enthalpy of OSA-70UT decreased the most (from 14.0 to 10.0 mJ/mg), indicating chain degradation. For pasting properties, as ultrasound treatment temperature increased, peak viscosity decreased (2884, 2550, and 1888 cP, respectively), whereas acid hydrolysis increased peak viscosity and decreased pasting temperature. The relative crystallinity of OSA-dextrin produced by ultrasound or acid hydrolysis significantly decreased (from 33.61 to 14.90-26.03 and 19.28-20.05, respectively) as temperature or time increased, yet a B-type crystal pattern was maintained. Regarding emulsifying stability and sensory tests of mayonnaise prepared with OSA potato dextrin, mayonnaise with OSA-70UT was stable for short storage period (1 week), however mayonnaise with OSA-AD1H was the most suitable for long storage periods (from 2 to 4 weeks). In addition, the OSA-70UT was the most acceptable for mayonnaise in the sensory test.

연구에서는 감자의 소비증진 및 식품산업에서의 활용가치 높이기 위해 OSA기를 도입한 감자덱스트린을 제조하고, 덱스트린의 구조 및 물리적 특성과 실제 마요네즈 적용가능성을 살펴보았다. 호화개시온도는 초음파 처리한 시료와 산 가수분해 시료에서 유의적으로 감소하였으며, 호화 엔탈피 값은 $70^{\circ}C$에서 초음파 처리한 시료에서만 유의적으로 크게 감소하였다. 페이스팅 점도특성은 초음파 처리 온도가 높아질수록 최고 점도는 감소하였으나, 산 처리 녹말에서는 오히려 최고점도가 증가하는 결과를 보였다. 감자녹말과 OSA-덱스트린 모두 B-타입의 결정도를 보였으나, 초음파 처리 온도가 높아질수록 상대적 결정도는 크게 감소하였고, 산 가수분해로 제조한 OSA-덱스트린의 경우 산 처리 시간에 따른 유의적 변화는 없었으나 $50^{\circ}C$에서 초음파 처리한 시료와 유사한 결정도를 보였다. OSA-녹말 또는 OSA-덱스트린의 유화안정성은 $70^{\circ}C$에서 1시간 초음파 처리하여 제조한 시료가 가장 높았고, 산 가수분해 덱스트린>$50^{\circ}C$에서 초음파 처리한 덱스트린= OSA녹말>$25^{\circ}C$에서 초음파 처리한 덱스트린의 순이었다. OSA-덱스트린을 노른자위의 75%대체하여 제조한 마요네즈의 관능적 특성결과 색이나 맛에서는 모든 시료간 유의적 차이가 없었다. 전체적인 선호도에서는 노른자위첨가 마요네즈와 50 또는 $70^{\circ}C$에서 1시간 초음파 처리한 OSA-덱스트린 첨가 시료 간에 유의적 차이가 없었으며, OSA-녹말첨가 마요네즈가 가장 낮은 점수를 받았다. 마요네즈의 유화안정성을 4주간 실험한 결과 1주 후에는 $70^{\circ}C$에서 초음파 처리한 덱스트린 첨가 마요네즈가, 2주 후부터는 1 시간 산 가수분해하여 제조한 덱스트린 첨가 마요네즈가 가장 높은 유화안정성을 보였으며, 2-4주까지는 노른자위첨가 마요네즈와 $70^{\circ}C$에서 초음파 처리한 OSA-덱스트린 첨가 마요네즈가 유사한 안정성을 보였다. 반면, $50^{\circ}C$에서 초음파 처리한 OSA-덱스트린 첨가 마요네즈의 안정성은 저장기간 내내 가장 낮았다. 본 실험결과 OSA-감자녹말을 초음파 및 산 처리에 의해 제조한 덱스트린은 OSA녹말보다 유화력이 우수하였으며, 특히 $70^{\circ}C$에서 1시간 초음파 처리한 덱스트린의 경우 노른자위를 대체하여 마요네즈나 저지방, 저콜레스테롤 식품제조에 다양하게 사용될 수 있을 것으로 생각된다.

Keywords

References

  1. Tesch S, Gerhards C, Schubert H. Stabilization of emulsions by OSA starches. J. Food Eng. 54: 167-174 (2002) https://doi.org/10.1016/S0260-8774(01)00206-0
  2. Liu Z, Li Y, Cui F, Ping L, Song J, Ravee Y, Wang, Y. Production of octenyl succinic anhydride-modified waxy corn starch and its characterization. J. Agr. Food Chem. 56: 11499-11506 (2008) https://doi.org/10.1021/jf802317q
  3. Bhosale R, Singhal R. Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches. Carbohydr. Polym. 66: 521-527 (2006) https://doi.org/10.1016/j.carbpol.2006.04.007
  4. Han JA, BeMiller JN. Preparation and physical characteristics of slowly digesting modified food starches. Carbohydr. Polym. 67: 366-374 (2007) https://doi.org/10.1016/j.carbpol.2006.06.011
  5. Cho SJ, Lim SH, Park HJ, Hwang HJ, Lim ST. Physical properties of octenyl succinylated corn amylodextrins as fat replacers in mayonnaise. Food Sci. Biotechnol. 8: 322-328 (1999)
  6. Chung HJ, Lee SE, Han JA, Lim ST. Physical properties of dryheated octenyl succinylated waxy corn starches and its application in fat-reduced muffin. J. Cereal Sci. 52: 496-501 (2010) https://doi.org/10.1016/j.jcs.2010.08.008
  7. Wu Y, Kang J, Chen X. Study on the applications of OSA modified potato starch in ice cream. Food Sci. Technol. 10: 228-237 (2006)
  8. Alexander RJ. Maltodextrins: Production, properties and applications. pp. 233-275. In: Starch Hydrolysis Products: Worldwide Technology, Production, and Applications. Schenck FW, Hebeda RE (eds.), VCH Publishers, NewYork, NY, USA (1992)
  9. Kang IJ, Byun MW, Yook HS, Bae CH, Lee HS, Kwon JH, Chung CK. Production of modified starch by gamma irradiation. Radiat. Phys. Chem. 54: 425-430 (1999) https://doi.org/10.1016/S0969-806X(98)00274-6
  10. Miao M, Xiong S, Jiang B, Jiang H, Cui SW, Zhang T. Dualenzymatic modification of maize starch for increasing slow digestion property. Food Hydrocolloid. 38: 180-185 (2014) https://doi.org/10.1016/j.foodhyd.2013.12.006
  11. Xu Y, Huang Q, Fu X, Jane JL. Modification of starch octenylsuccinate by ${\beta}$-amylase hydrolysis in order to increase its emulsification properties. Food Hydrocolloid. 48: 55-61 (2015) https://doi.org/10.1016/j.foodhyd.2015.02.010
  12. Matsumoto A, Tsubaki S, Sakamoto M, Azuma JI. A novel saccharification method of starch using microwave irradiation with addition of activated carbon. Bioresource Technol. 102: 3985-3988 (2011) https://doi.org/10.1016/j.biortech.2010.12.013
  13. Han JA, Lim ST. Effect of ${\gamma}$-irradiation on pasting and emulsification properties of octenyl succinylated rice starches. Carbohydr. Polym. 90: 1480-1485 (2012) https://doi.org/10.1016/j.carbpol.2012.07.018
  14. Jackson DS, Choto-Owen C, Waniska RD, Rooney LW. Characterization of starch cooked in alkali by aqueous high performance size-exclusion chromatography. Cereal Chem. 65: 493-496 (1988)
  15. Koo MC, Moon TW, Kim H, Chun JK. Physicochemical properties of sonicated mung bean, potato, and rice starches. Cereal Chem. 79: 631 (2002) https://doi.org/10.1094/CCHEM.2002.79.5.631
  16. You SG, Lim ST. Molecular characterization of corn starch using an aqueous HPSEC-MALS-RI system under various dissolution and analytical conditions. Cereal Chem. 77: 303-308 (2000) https://doi.org/10.1094/CCHEM.2000.77.3.303
  17. Wang YJ, Wang LF. Characterization of acetylated waxy maize starches prepared under catalysis by different alkali and alkalineearth hydroxides. Starch/Starke 54: 25-30 (2002) https://doi.org/10.1002/1521-379X(200201)54:1<25::AID-STAR25>3.0.CO;2-T
  18. Thirathumthavorn D, Charoenrein S. Thermal and pasting properties of native and acid-treated starches derivatized by 1-octenyl succinic anhydride. Carbohydr. Polym. 66: 258-265 (2006) https://doi.org/10.1016/j.carbpol.2006.03.016
  19. Liu Q, Weber E, Currie V, Yada R. Physicochemical properties of starches during potato growth. Carbohydr. Polym. 51: 213-221 (2003) https://doi.org/10.1016/S0144-8617(02)00138-8
  20. Somogyi MA. Notes on sugar determination. J. Biol. Chem. 195: 19-23 (1952)
  21. Nara S, Mori A, Komiya T. Study on relative crystallinity of moist potato starch. Starch/Starke 30: 111-114 (1978). https://doi.org/10.1002/star.19780300403
  22. Han JA, Lim ST. Effect of ${\gamma}$-irradiation on pasting and emulsification properties of octenyl succinylated rice starches. Carbohydr. Polym. 90: 1480-1485 (2012) https://doi.org/10.1016/j.carbpol.2012.07.018
  23. Hui R, Chen QH, Fu ML, Xu Q, He GQ. Preparation and properties of octenyl succinic anhydride modified potato starch. Food Chem. 114: 81-86 (2009) https://doi.org/10.1016/j.foodchem.2008.09.019
  24. Zhang B, Huang Q, Luo FX, Fu X, Jiang HX, Jane JL. Effects of octenyl succinylation on the structure and properties of highamylose maize starch. Carbohydr. Polym. 84: 1276-1281 (2011) https://doi.org/10.1016/j.carbpol.2011.01.020
  25. Lawal OS. Succinyl and acetyl starch derivatives of a hybrid maize: Physicochemical characteristics and retrogradation properties monitored by differential scanning calorimetry. Carbohydr. Res. 339: 2673-2682 (2004) https://doi.org/10.1016/j.carres.2004.08.015
  26. Gidley MJ, Bulpin PV. Crystallization of malto-oligosaccharides as models of the crystalline forms of starch: Minimum chain length requirement for the formation of double helices. Carbohydr. Polym. 13: 291-300 (1987)
  27. Sujka M, Jamroz J. Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloid. 31: 413-419 (2013) https://doi.org/10.1016/j.foodhyd.2012.11.027
  28. Gallant D, Degrois M, Sterling C, Guilbot A. Microscopic effects of ultrasound on the structure of potato starch preliminary study. Starch/Starke 24: 116-123 (1972) https://doi.org/10.1002/star.19720240405
  29. Jambrak AR, Herceg Z, ubari D, Babi J, Brni M, Brni SR, Gelo J. Ultrasound effect on physical properties of corn starch. Carbohydr. Polym. 79: 91-100 (2010) https://doi.org/10.1016/j.carbpol.2009.07.051
  30. Yu S, Zhang Y, Ge Y, Zhang Y, Sun T, Jiao Y, Zheng XQ. Effects of ultrasound processing on the thermal and retrogradation properties of non waxy rice starch. J. Food Process Eng. 36: 793-802 (2013) https://doi.org/10.1111/jfpe.12048
  31. Bao J, Xing J, Phillips DL. Physical properties of octenyl succinic anhydride modified rice, wheat, and potato starches. J. Agr. Food Chem. 51: 2283-2287 (2003) https://doi.org/10.1021/jf020371u
  32. Deschreider AR. Changes in starch and its degradation products on irradiating wheat flour with gamma rays. Starch/Starke 12: 197 (1960)
  33. Tester RF, Morrison WR. Swelling and gelatinization of cereal starches. I. Effects of amylopectin and amylose, and lipids. Cereal Chem. 67: 551-557 (1990)
  34. Banks W, Greenwood CT. Starch and its components. Halsted Press, NewYork, NY, USA. pp. 309-325 (1975)
  35. Zhu J, Li L, Chen L, Li X. Study on supramolecular structural changes of ultrasonic treated potato starch granules. Food Hydrocolloid. 29: 116-122 (2012) https://doi.org/10.1016/j.foodhyd.2012.02.004
  36. Zheng J, Li Q, Hu A, Yang L, Lu J, Zhang X, Lin, Q. Dual-frequency ultrasound effect on structure and properties of sweet potato starch. Starch/Starke 65: 621-627 (2013) https://doi.org/10.1002/star.201200197
  37. Biliaderis CG, Grant, DR, Vose JR. Structural characterization of legume starches. II. Studies on acid-treated starches. Cereal Chem. 58: 502-507 (1981)
  38. Robin JP, Mercier, C., Charbonniere R, Guilbot A. Lintnerized starches. Gel filtration and enzymatic studies of insoluble residuse from prolonged acid treatment of potato starches. Cereal Chem. 51: 398-406 (1974)
  39. Kainuma K, French D. Naegeli amylodextrin and its relationship to starch granule structure. II. Role of water in crystallization of Bstarch. Biopolymers 11: 2241-2250 (1972) https://doi.org/10.1002/bip.1972.360111105
  40. Ghazaei S, Mizani M, Piravi-Vanak Z, Alimi M. Particle size and cholesterol content of a mayonnaise formulated by OSA-modified potato starch. Food Sci. Technol. 35: 150-156 (2015) https://doi.org/10.1590/1678-457X.6555