DOI QR코드

DOI QR Code

Preparation of γ-oryzanol-loaded pectin micro and nanocapsules and their characteristics according to particle size

감마오리자놀 함유 칼슘-펙틴 미세 및 나노캡슐의 제조와 입자 크기에 따른 캡슐특성

  • Lee, Seul (Department of Food and Nutrition, Hanyang University) ;
  • Kim, Eun Suh (Department of Food and Nutrition, Hanyang University) ;
  • Lee, Ji-Soo (Department of Food and Nutrition, Hanyang University) ;
  • Lee, Hyeon Gyu (Department of Food and Nutrition, Hanyang University)
  • 이슬 (한양대학교 식품영양학과) ;
  • 김은서 (한양대학교 식품영양학과) ;
  • 이지수 (한양대학교 식품영양학과) ;
  • 이현규 (한양대학교 식품영양학과)
  • Received : 2016.09.07
  • Accepted : 2016.11.12
  • Published : 2017.02.28

Abstract

${\gamma}-Oryzanol-loaded$ calcium-pectin micro- and nanocapsules were prepared by ionic gelation to improve oxidation stability and the effect of particle size on capsule properties was investigated. The physical properties were influenced by preparation conditions such as concentrations of pectin, $CaCl_2$, ${\gamma}-oryzanol$, and hardening time. Particle sizes of micro- and nanocapsules that showed the maximum encapsulation efficiency and sustained release were $2.27{\pm}0.02mm$ and $347.7{\pm}58.1nm$, respectively. Microcapsules showed higher encapsulation efficiency ($50.73{\pm}1.98%$) than nanocapsules ($17.70{\pm}2.04%$), while nanocapsules showed more sustained release and higher stability than microcapsules. Release of ${\gamma}-oryzanol$ from both microand nanocapsules, which was low in gastric environments and promoted in intestinal environments, showed suitable characteristics for oral administration. Furthermore, antioxidant activity of ${\gamma}-oryzanol$ against autoxidation of linoleic acid was prolonged by both micro- and nanoencapsulation in a ferric thiocyanate test. Therefore, micro- and nanoencapsulation using pectin can be effective for improving biodelivery, stability, and antioxidant activity of ${\gamma}-oryzanol$.

감마오리자놀의 산화안정성을 증진시키기 위해 천연 다당류인 펙틴과 칼슘이온의 이온결합을 이용한 펙틴 겔 미세캡슐과 나노캡슐을 제조하였다. 캡슐의 입자특성은 펙틴, 염화칼슘, 감마오리자놀 농도와 경화시간 변화에 영향을 받았으며, 포집 효율과 방출 조절 측면에서 가장 효과적이었던 펙틴 2%, 염화칼슘 4%, 경화시간 60분에서 제조한 미세캡슐과 펙틴 0.05%, 염화칼슘 4%, 감마오리자놀 5%에서 제조한 나노캡슐을 선정하였다. 입자 크기에 따른 두 캡슐 제형에 대한 비교분석 결과, 감마오리자놀 포집 효율은 입자 크기 증가로 인한 내부 포집공간 증가로 미세캡슐에서 더 높게 나타났으며, 이는 유효량 섭취의 효율측면에서 경구투여에 적합한 것으로 판단되었다. 감마오리자놀 함유 펙틴 캡슐 모두가 산성에서 방출이 억제되고 중성으로 갈수록 방출이 촉진되어 체내 소화환경에서 효과적인 전달체의 특성을 보였으며, 미세캡슐에 비해 나노캡슐의 방출 조절이 더 효과적으로 나타나 감마오리자놀의 장기 저장과 활성유지에 더 적합한 것으로 판단되었다. FTC법을 통한 지질산화 저해능 평가에서는 저장 5일 이후 유리 감마오리자놀의 산화방지 활성이 감소한 데 반해 감마오리자놀 함유 미세와 나노캡슐은 지속적인 지방산화 억제활성을 지속적으로 유지하였다. 본 연구를 통해 미세와 나노캡슐화는 감마오리자놀의 안정성 및 지질산화 활성 증대에 효과적이며, 제형 특성에 따라 다양한 용도로 활용 될 수 있을 것으로 판단된다.

Keywords

References

  1. Friedman M. Rice brans, rice bran oils, and rice hulls: Composition, food and industrial uses, and bioactivities in humans, animals, and cells. J. Agr. Food Chem. 61: 10626-10641 (2013) https://doi.org/10.1021/jf403635v
  2. Bergman C, Xu Z. Genotype and environment effects on tocopherol, tocotrienol, and ${\gamma}$-oryzanol contents of Southern US rice. Cereal Chem. 80: 446-449 (2003) https://doi.org/10.1094/CCHEM.2003.80.4.446
  3. Mäkynen K, Chitchumroonchokchai C, Adisakwattana S, Failla M, Ariyapitipun T. Effect of gamma-oryzanol on the bioaccessibility and synthesis of cholesterol. Eur. Rev. Med. Pharmacol. Sci. 16: 49-56 (2012)
  4. Son MJ, Rico CW, Nam SH, Kang MY. Influence of oryzanol and ferulic acid on the lipid metabolism and antioxidative status in high fat-fed mice. J. Clin. Biochem. Nutr. 46: 150-156 (2010) https://doi.org/10.3164/jcbn.09-98
  5. Akihisa T, Yasukawa K, Yamaura M, Ukiya M, Kimura Y, Shimizu N, Arai K. Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. J. Agr. Food Chem. 48: 2313-2319 (2000) https://doi.org/10.1021/jf000135o
  6. Ohara K, Kiyotani Y, Uchida A, Nagasaka R, Maehara H, Kanemoto S, Hori M, Ushio H. Oral administration of ${\gamma}$-aminobutyric acid and ${\gamma}$-oryzanol prevents stress-induced hypoadiponectinemia. Phytomedicine 18: 655-660 (2011) https://doi.org/10.1016/j.phymed.2011.01.003
  7. Marimuthu S, Adluri RS, Rajagopalan R, Menon VP. Protective role of ferulic acid on carbon tetrachloride-induced hyperlipidemia and histological alterations in experimental rats. J. Basic Clin. Physiol. Pharmacol. 24: 59-66 (2013)
  8. Deepam LA, Sundaresan A, Arumughan C. Stability of rice bran oil in terms of oryzanol, tocopherols, tocotrienols and sterols. J. Am. Oil Chem. Soc. 88: 1001-1009 (2011) https://doi.org/10.1007/s11746-010-1744-1
  9. Julianto T, Yuen KH, Noor AM. Improved bioavailability of vitamin E with a self emulsifying formulation. Int. J. Pharm. 200: 53-57 (2000) https://doi.org/10.1016/S0378-5173(00)00337-9
  10. Umehara K, Shimokawa Y, Miyamoto G. Effect of gamma-oryzanol on cytochrome P450 activities in human liver microsomes. Biol. Pharm. Bull. 27: 1151-1153 (2004) https://doi.org/10.1248/bpb.27.1151
  11. Fang Z, Bhandari B. Encapsulation of polyphenols-a review. Trends Food Sci. Technol. 21: 510-523 (2010) https://doi.org/10.1016/j.tifs.2010.08.003
  12. Racoviţă S, Vasiliu S, Popa M, Luca C. Polysaccharides based on micro-and nanoparticles obtained by ionic gelation and their applications as drug delivery systems. Rev. Roum. Chim. 54: 709-718 (2009)
  13. Keawchaoon L, Yoksan R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloid Surf. B Biointerfaces 84: 163-171 (2011) https://doi.org/10.1016/j.colsurfb.2010.12.031
  14. Elmowafy EM, Awad GA, Mansour S, El-Shamy AE-HA. Ionotropically emulsion gelled polysaccharides beads: Preparation, in vitro and in vivo evaluation. Carbohydr. Polym. 75: 135-142 (2009) https://doi.org/10.1016/j.carbpol.2008.07.019
  15. Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur. J. Pharm. Biopharm. 58: 327-341 (2004) https://doi.org/10.1016/j.ejpb.2004.02.016
  16. Lee JS, Chung D, Lee HG. Optimization of calcium pectinate gel beads for sustained-release of catechin using response surface methodology. Int. J. Biol. Macromol. 42: 340-347 (2008) https://doi.org/10.1016/j.ijbiomac.2008.01.003
  17. Mishra R, Banthia A, Majeed A. Pectin based formulations for biomedical applications: A review. Asian J. Pharm. Clin. Res. 5: 1-7 (2012)
  18. Ezhilarasi P, Karthik P, Chhanwal N, Anandharamakrishnan C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Tech. 6: 628-647 (2013) https://doi.org/10.1007/s11947-012-0944-0
  19. Joye IJ, McClements DJ. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr. Opin. Colloid Interface Sci. 19: 417-427 (2014) https://doi.org/10.1016/j.cocis.2014.07.002
  20. Jang KI, Lee HG. Stability of chitosan nanoparticles for L-ascorbic acid during heat treatment in aqueous solution. J. Agr. Food Chem. 56: 1936-1941 (2008) https://doi.org/10.1021/jf073385e
  21. Bucci R, Magrì AD, Magrì AL, Marini F. Comparison of three spectrophotometric methods for the determination of ${\gamma}$-oryzanol in rice bran oil. Anal. Bioanal. Chem. 375: 1254-1259 (2003) https://doi.org/10.1007/s00216-002-1700-5
  22. Yoo S-H, Song YB, Chang PS, Lee HG. Microencapsulation of a-tocopherol using sodium alginate and its controlled release properties. Int. J. Biol. Macromol. 38: 25-30 (2006) https://doi.org/10.1016/j.ijbiomac.2005.12.013
  23. Cacace J, Reilly EE, Amann A. Comparison of the dissolution of metaxalone tablets (Skelaxin) using USP apparatus 2 and 3. AAPS Pharm. Sci. Tech. 5: 29-31 (2004)
  24. Lilitchan S, Tangprawat C, Aryusuk K, Krisnangkura S, Chokmoh S, Krisnangkura K. Partial extraction method for the rapid analysis of total lipids and ${\gamma}$-oryzanol contents in rice bran. Food Chem. 106: 752-759 (2008) https://doi.org/10.1016/j.foodchem.2007.06.052
  25. Lee JS, Park SA, Chung D, Lee HG. Encapsulation of astaxanthin- rich Xanthophyllomyces dendrorhous for antioxidant delivery. Int. J. Biol. Macromol. 49: 268-273 (2011) https://doi.org/10.1016/j.ijbiomac.2011.04.021
  26. Sarmento B, Ribeiro A, Veiga F, Ferreira D. Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids Surf. B Biointerfaces 53: 193-202 (2006) https://doi.org/10.1016/j.colsurfb.2006.09.012
  27. Opanasopit P, Apirakaramwong A, Ngawhirunpat T, Rojanarata T, Ruktanonchai U. Development and characterization of pectinate micro/nanoparticles for gene delivery. AAPS Pharm. Sci. Tech. 9: 67-74 (2008) https://doi.org/10.1208/s12249-007-9007-7
  28. Zigoneanu IG, Astete CE, Sabliov CM. Nanoparticles with entrapped ${\alpha}$-tocopherol: Synthesis, characterization, and controlled release. Nanotechnology 19: 105606 (2008) https://doi.org/10.1088/0957-4484/19/10/105606
  29. Puguan JMC, Yu X, Kim H. Characterization of structure, physico-chemical properties and diffusion behavior of Ca-alginate gel beads prepared by different gelation methods. J. Colloid Interface Sci. 432: 109-116 (2014) https://doi.org/10.1016/j.jcis.2014.06.048
  30. Sriamornsak P, Kennedy RA. A novel gel formation method, microstructure and mechanical properties of calcium polysaccharide gel films. Int. J. Pharm. 323: 72-80 (2006) https://doi.org/10.1016/j.ijpharm.2006.05.045
  31. Fu X, Ping Q, Gao Y. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine APLGA microspheres. J. Microencapsul. 22: 705-714 (2005) https://doi.org/10.1080/02652040500162196
  32. Liu L, Fishman ML, Kost J, Hicks KB. Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 24: 3333-3343 (2003) https://doi.org/10.1016/S0142-9612(03)00213-8
  33. Kim WT, Chung H, Shin IS, Yam KL, Chung D. Characterization of calcium alginate and chitosan-treated calcium alginate gel beads entrapping allyl isothiocyanate. Carbohydr. Polym. 71: 566-573 (2008) https://doi.org/10.1016/j.carbpol.2007.06.028
  34. Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V. Polymer degradation and in vitro release of a model protein from poly (D, L-lactide-co-glycolide) nano-and microparticles. J. Controlled Release 92: 173-187 (2003) https://doi.org/10.1016/S0168-3659(03)00328-6
  35. Killen BU, Corrigan OI. Factors influencing drug release from stearic acid based compacts. Int. J. Pharm. 228: 189-198 (2001) https://doi.org/10.1016/S0378-5173(01)00841-9
  36. Ouimet MA, Griffin J, Carbone-Howell AL, Wu W-H, Stebbins ND, Di R, Uhrich KE. Biodegradable ferulic acid-containing poly (anhydride-ester): Degradation products with controlled release and sustained antioxidant activity. Biomacromolecules 14: 854-861 (2013) https://doi.org/10.1021/bm3018998