DOI QR코드

DOI QR Code

Spreading Dynamics of an Ellipsoidal Drop Impacting on a Heated Substrate

고온으로 가열된 고체 표면과 충돌하는 타원형 액적의 퍼짐 거동

  • Yun, Sungchan (School of Mechanical, Automotive and Aeronautical Engineering, Korea Nat'l. Univ. of Transportation)
  • 윤성찬 (한국교통대학교 기계자동차항공공학부)
  • Received : 2016.09.23
  • Accepted : 2016.11.12
  • Published : 2017.03.01

Abstract

Unlike spherical drop impact, ellipsoidal drop impact can control the bouncing height on a heated surface by significantly altering impact behavior. To scrutinize the effect of the aspect ratio (AR) of the drop on the bounce suppression, in this study, non-axisymmetric spreading behaviors are observed from two side views and characterized based on the spreading width of the drop for horizontal principal axes. In addition, the maximum spreading width is investigated for various ARs. The results show that as the AR increases, the maximum spreading width of the minor axis increases, whereas that of the major axis shows no significant variation. In the regime of high AR and high impact velocity, liquid fragmentations by three parts are observed during bouncing. These fragmentations are discussed in this work. The hydrodynamic features of ellipsoidal drop impact will help understand bouncing control on non-wetting surfaces for several applications, such as self-cleaning and spray cooling.

고온으로 가열된 고체 표면 위를 타원형 액적이 충돌할 때, 구형 액적 충돌 거동과 다른 비축대칭적인 퍼짐 거동이 발생하여 반동 높이 조절이 가능하다고 보고되었다. 본 연구에서는 타원형 액적 종횡비가 퍼짐 거동에 미치는 영향을 조사하였다. 충돌 거동은 동기화된 두 대의 고속카메라를 이용하여 두 측면에서 관찰하였고, 액적의 장축과 단축에서의 액적 퍼짐 너비를 각각 조사함으로써 퍼짐 특성을 분석하였다. 실험 결과에서 종횡비가 클수록, 액적 단축의 최대 퍼짐 너비는 증가하는 데 반해, 액적 장축의 것은 큰 변화가 없는 것으로 나타나는 데, 이는 수축 과정에서 액적 정렬을 촉진하고 반동 억제에 중요한 역할을 한다. 본 연구에서는 추가적으로 액적 종횡비와 충돌 속도가 동시에 큰 영역에서 발생하는 반동 거동과 액적 분열 현상에 대하여 고찰하였다.

Keywords

References

  1. Leidenfrost, J. G., 1756, "De Aquae Communis Nonnullis Qualitatibus Tractatus," Ovenius.
  2. Deng, W. and Gomez, A., 2011, "Electrospray Cooling for Microelectronics," International Journal of Heat and Mass Transfer, Vol. 54, No. 11, pp. 2270-2275. https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.038
  3. Bergeron, V., Bonn, D., Martin, J. Y. and Vovelle, L., 2000, "Controlling Droplet Deposition with Polymer Additives," Nature, Vol. 405, No. 6788, pp. 772-775. https://doi.org/10.1038/35015525
  4. Smith, M. I. and Bertola, V., 2010, "Effect of Polymer Additives on the Wetting of Impacting Droplets," Physical Review Letters, Vol. 104, No. 15, p. 154502. https://doi.org/10.1103/PhysRevLett.104.154502
  5. Bertola, V., 2014, "Effect of Polymer Concentration on the Dynamics of Dilute Polymer Solution Drops Impacting on Heated Surfaces in the Leidenfrost Regime," Experimental Thermal and Fluid Science, Vol. 52, pp. 259-269. https://doi.org/10.1016/j.expthermflusci.2013.09.019
  6. Yun, S., Hong, J. and Kang, K. H., 2013, "Suppressing Drop Rebound by Electrically Driven Shape Distortion," Physical Review E, Vol. 87, No. 3, p. 033010. https://doi.org/10.1103/PhysRevE.87.033010
  7. Yun, S. and Lim, G., 2014, "Control of a Bouncing Magnitude on a Heated Substrate via Ellipsoidal Drop Shape," Applied Physics Letters, Vol. 105, No. 24, p. 244108. https://doi.org/10.1063/1.4904838
  8. Tran, T., Staat, H. J., Prosperetti, A., Sun, C. and Lohse, D., 2012, "Drop Impact on Superheated Surfaces," Physical Review Letters, Vol. 108, No. 3, p. 036101. https://doi.org/10.1103/PhysRevLett.108.036101
  9. Rayleigh, L., 1879, "On the Capillary Phenomena of Jets," In Proc. R. Soc. London, Vol. 29, No. 196-199, pp. 71-97. https://doi.org/10.1098/rspl.1879.0015
  10. Yun, S. and Lim, G., 2014, "Ellipsoidal Drop Impact on a Solid Surface for Rebound Suppression," Journal of Fluid Mechanics, Vol. 752, pp. 266-281. https://doi.org/10.1017/jfm.2014.332
  11. Biance, A. L., Pirat, C. and Ybert, C., 2011, "Drop Fragmentation due to Hole Formation During Leidenfrost Impact," Physics of Fluids, Vol. 23, No. 2, p. 022104. https://doi.org/10.1063/1.3553277