DOI QR코드

DOI QR Code

Synthesis and characterization of potassium titanate whisker by hydrothermal process

수열합성법을 이용한 티탄산칼륨 휘스커의 합성과 특성

  • Choi, Yeon-Bin (Department of Advanced Materials Science and Engineering, Changwon National University) ;
  • Son, Jeong-hun (Department of Advanced Materials Science and Engineering, Changwon National University) ;
  • Lee, Je Kyun (Basic Materials & Chemicals R & D of LGChem.) ;
  • Bae, Dong-Sik (Department of Advanced Materials Science and Engineering, Changwon National University)
  • 최연빈 (창원대학교 신소재공학과) ;
  • 손정훈 (창원대학교 신소재공학과) ;
  • 이제균 (LG화학기술연구원 정밀화학 연구부) ;
  • 배동식 (창원대학교 신소재공학과)
  • Received : 2016.11.04
  • Accepted : 2017.01.31
  • Published : 2017.02.28

Abstract

$K_2Ti_6O_{13}$ whisker have been synthesized by hydrothermal process at low temperature and pressure condition. The average length of the synthesized $K_2Ti_6O_{13}$ whisker was about in the range of 300 nm to $1.5{\mu}m$. The average diameter of the synthesized $K_2Ti_6O_{13}$ whisker was 15 nm to 60 nm. The aspect ratio of the synthesized $K_2Ti_6O_{13}$ whisker was below 12. The average length and diameter of the synthesized $K_2Ti_6O_{13}$ whisker can be controlled by reaction temperature and time, KOH molar ratio. $K_2Ti_6O_{13}$ whisker was synthesized from more than $210^{\circ}C$ and 4 h at reaction temperature and time. The length of the whisker is increased with increasing reaction temperature. Characterization of the synthesized $K_2Ti_6O_{13}$ whisker was carried out using the XRD and FE-SEM.

$K_2Ti_6O_{13}$ 휘스커는 낮은 온도 및 압력조건에서 수열합성법을 통해 합성하였다. 합성된 $K_2Ti_6O_{13}$의 평균길이는 $300nm{\sim}1.5{\mu}m$이고, 평균 반경은 15 nm~60 nm이다. 합성된 $K_2Ti_6O_{13}$의 Aspect ratio는 12 이하로 측정되었다. 합성된 $K_2Ti_6O_{13}$의 평균 길이와 직경은 반응온도와 시간, KOH 몰 농도를 조절하여 제어하였다. 결정구조 상 반응온도 $210^{\circ}C$, 반응시간 4시간 이상에서 potassium hexatitanate가 합성되었고, 휘스커의 길이는 반응온도가 증가할수록 증가하였다. 합성된 $K_2Ti_6O_{13}$은 X-선 회절분석기(XRD)와 전계 방사 주사전자현미경(FE-SEM)을 이용하여 특성평가를 실시하였다.

Keywords

References

  1. M.A. Siddiquia, V.S. Chandel and A. Azam, "Comparative study of potassium hexatitanate ($K_2Ti_6O_{13}$) whiskers prepared by sol-gel and solid state reaction routes", Appl. Surf. Sci. 258 (2012) 7354. https://doi.org/10.1016/j.apsusc.2012.04.018
  2. T. Endo, H. Nagayama, T. Sato and M. Shimada, ''Crystal growth of poatassium titanates in the system $K_2O-Fe_2O_3-TiO_2$'', J. Cryst. Growth 78 (1986) 423. https://doi.org/10.1016/0022-0248(86)90142-9
  3. X. Zhang, S. Tang, L Zhai, J. Yu, Y. Shi and Y. Du, "A simple molten salt method to synthesize single-crystalline potassium titanate nanobelts", Mater. Lett. 63 (2009) 887. https://doi.org/10.1016/j.matlet.2009.01.030
  4. X. Wang, S.J. Liu, Y.M. Qi, L.C. Zhao and C.X. Cui, "Behavior of potassium titanate whisker in simulated body fluid", Mater. Lett. 135 (2014) 139. https://doi.org/10.1016/j.matlet.2014.07.145
  5. X. Meng, D. Wang, J. Liu, B. Lin and Z. Fu, "Effects of titania different phases on the microstructure and properties of $K_2Ti_6O_{13}$ nanowires", Solid State Comm. 137 (2006) 146. https://doi.org/10.1016/j.ssc.2005.11.004
  6. Q. Wang, Z. Guo and J.S. Chung, "Formation and structural characterization of potassium titanates and the potassium ion exchange property", Mater. Res. Bull. 44 (2009) 1973. https://doi.org/10.1016/j.materresbull.2009.06.009
  7. J.K. Lee, K.H. Lee and H. Kim, "Microstructural evolution of potassium titanate whiskers during the synthesis by the calcination and slow-cooling method", J. Mater. Sci. 31 (1996) 5493. https://doi.org/10.1007/BF01159322
  8. Q. Wang, Q. Guo, H. Wang and B. Li, "Molten salt synthesis of crystalline photocatalytic potassium octatitanate whiskers from KCl melt", Mater. Lett. 155 (2015) 38. https://doi.org/10.1016/j.matlet.2015.04.113
  9. H. Manyu, L. Yimin, L. Chunguang and L. Xia, "Structural, electronic and elastic properties of potassium hexatitanate crystal from first-principles calculations", Phys. B Condens Matter. 407 (2012) 2811. https://doi.org/10.1016/j.physb.2012.04.033
  10. S.O. Kang, H.S. Jang, Y.I. Kim, K.B. Kim and M.J. Jung, "Study on the growth of potassium titanate nanostructures prepared by sol-gel-calcination process", Mater. Lett. 61 (2007) 473. https://doi.org/10.1016/j.matlet.2006.04.091
  11. Y. Li, H. Yu, Y. Yang, F. Zheng, H. Ni, M. Zhang and M. Guo, "Synthesis of potassium hexatitanate whisker with high thermal stability from Ti-bearing electric arc furnace molten slag", Ceram. Int. 42 (2016) 11294. https://doi.org/10.1016/j.ceramint.2016.04.047
  12. T. Zaremba and D. Witkowska, "Methods of manufacturing of potassium titanate fibres and whiskers. A review", Mater. Sci. 28 (2010) 25.
  13. N. Bao, X. Feng, L. Shen and X. Lu, "Calcination syntheses of a series of potassium titanates and their morphologic evolution", Cryst. Growth Des. 2 (2002) 437. https://doi.org/10.1021/cg025541+
  14. N. Bao, X. Feng, X. Lu, L. Shen and K. Yanagisawa, "Low-temperature controllable calcination syntheses of potassium dititanate", AIChE J. 50 (2004) 1568. https://doi.org/10.1002/aic.10167
  15. A.V. Gorokhovsky, J.I.E. Garcia, T.S. Monjaras and C.A.G. Chavarria, "Synthesis of potassium polytitanate precursors by treatment of $TiO_2$ with molten mixtures of $KNO_3$ and KOH", J. Eur. Ceram. Soc. 24 (2004) 3541. https://doi.org/10.1016/j.jeurceramsoc.2003.12.006
  16. L. Xu and L. Cheng, "Environmentally friendly growth of single-crystalline $K_2Ti_6O_{13}$ nanoribbons from KCl flux", Mater. Char. 61 (2010) 245. https://doi.org/10.1016/j.matchar.2009.12.002
  17. S. Takaya, Y. Lu, S. Guan, K. Miyazawa, H. Yoshida and H. Asanuma, "Fabrication of the photocatalyst thin films of nano-structured potassium titanate by molten salt treatment and its photocatalytic activity", Surf. Coating Tech. 275 (2015) 260. https://doi.org/10.1016/j.surfcoat.2015.05.009
  18. L. Shen, N. Bao, Y. Zheng, A. Gupta, T. An and K. Yanagisawa, "Hydrothermal splitting of titanate fibers to single-crystalline $TiO_2$ nanostructures with controllable crystalline phase, morphology, microstructure, and photocatalytic activity", J. Phys. Chem. C112 (2008) 8809.
  19. J. Park, "Photocatalytic activity of hydroxyapatite-precipitated potassium titanate whiskers", J. Alloy Comp. 492 (2010) 57. https://doi.org/10.1016/j.jallcom.2009.11.172
  20. R. Luo, Y. Ni, J. Li, C. Yang and S. Wang, "The mechanical and thermal insulating properties of resinderived carbon foams reinforced by $K_2Ti_6O_{13}$ whiskers", Mater. Sci. Eng. 528 (2011) 2023. https://doi.org/10.1016/j.msea.2010.10.106
  21. Y. Liu, T. Qi and Y. Zhang, "A novel way to synthesize potassium titanates", Mater. Lett. 60 (2006) 203. https://doi.org/10.1016/j.matlet.2005.08.017
  22. N. Bao, L. Shen, X. Feng and X. Lu, "High quality and yield in potassium titanate whiskers synthesized by calcination from hydrous titania", J. Am. Ceram. Soc. 87 (2004) 326. https://doi.org/10.1111/j.1551-2916.2004.00326.x
  23. Y. Cao, K. Zhu, Q. Wu, Q. Gu and J. Qiu, "Hydrothermally synthesized barium titanate nanostructures from $K_{2}Ti_{4}O_{9}$ precursors: Morphology evolution and its growth mechanism", Mater. Res. Bull. 57 (2014) 162. https://doi.org/10.1016/j.materresbull.2014.05.043
  24. J.H. Choy, Y.S. Han and S.W. Song, "Flux melting route to 2-and 3-dimensional fibrous potassium titanates, $K_{2}Ti_{2n}O_{4n+1}$ (n = 2 and 3)", J. Kor. Chem. Soc. 37 (1993) 765.
  25. E.K. Jung, Ph. D.Y. Kim (in Korean), "Study on nucleation and growth process of iron oxide nanopaticles", Andong University, Kyungpook (2016) p. 16.
  26. D.G. Kang and J.T. Song, "Synthesis of potassium titanate by wet process", J. Korean Cryt. Growth Cryt. Technol. 5 (1995) 278.
  27. J.K. Lee, K.H. Lee and H. Kim, "Microstructural evolution of potassium titanate whiskers during the synthesis by the calcination and slow-cooling method", Mater. Sci. 31 (1996) 5493. https://doi.org/10.1007/BF01159322
  28. S.H. Lee, Ph G.J. Lee (in Korean), "(The) effects of Si and austenite grain size on the ferrite transformation by using the classical nucleation & growth theory", Hanyang University, Seoul (2008) p. 25.